
University of Huddersfield Repository

Kitchin, Diane E., McCluskey, T.L. and West, Margaret M.

B vs OCL: comparing specification languages for Planning Domains

Original Citation

Kitchin, Diane E., McCluskey, T.L. and West, Margaret M. (2005) B vs OCL: comparing
specification languages for Planning Domains. In: Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS 2005). AAAI Press. ISBN 978-1-
57735-220-4

This version is available at http://eprints.hud.ac.uk/id/eprint/1264/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

B vs OCL: Comparing specification languages for Planning Domains

D. E. Kitchin, T. L. McCluskey and M. M. West
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK
D.Kitchin,T.L.McCluskey,M.M.West@hud.ac.uk

Abstract

In this paper we examine the specification and validation of
Artificial Intelligence Planning domain models using the B
Abstract Machine Notation and its associated tool support.
We compare this to the use ofOCL (object-centred language)
within its tool-supported environment, GIPO. We present en-
codings of two well-known AI planning domain models, the
Blocks world and the Tyres world, with the aim of finding a
correspondence between the B and the OCL languages. We
also compare the tool-supported validation offered by their
respective environments.

Introduction
As AI Planning and Scheduling systems become mature
enough to be deployed in safety-related and safety critical
systems, the reliability of the systems themselves, and the
accuracy of the knowledge models that underlie the systems,
need to be certified to a high level. Planning systems typi-
cally contain planning engines, plan execution architectures,
plan generation heuristics and application domain models.
In this paper we focus on techniques for the rigorous con-
struction and validation of the application domain model.
This typically contains a structural model of the objects and
constraints in the planning world, and a model of the ac-
tions/events that affect objects in that world.

It is likely that any reasonably sized realistic domain
model will continue to contain errors and inconsistencies for
some time. A planner may manage to produce a solution de-
spite the fact that the domain model is flawed. Alternatively
no plan will be produced because of inconsistencies in the
domain model. Whatever the case it is desirable to be able to
validate the domain modelbeforean attempt is made to gen-
erate a plan. One approach to this is to use model checking
for validation, as in (Penix, Pecheur, & Havelund 1998), but
this is limited by potential state space explosion. Another
approach could be to assumea priori that the domain model
will be incomplete as in theSiN algorithm (Munoz-Avilaet
al. 2001). SiN can generate plans given an incomplete do-
main theory by using cases to extend that domain theory,
and can also reason with imperfect world-state information.
This is a fruitful assumption in many ways, as philosophi-
cally no model can ever be ‘proved’ complete and correct.
However, this approach neglects the issue of correctness -

the incomplete parts must still be validated and bugs identi-
fied and eliminated.

In this paper we investigate the use of a formal method
from the area of software specification to capture planning
domain models. These mathematically based methods are
chiefly for use in applications where safety-critical software
has to be produced, and where validation (of the specifica-
tion) and verification (of software derived from the specifi-
cation) are important considerations. The method we chose
is B, in conjunction with its tool support the B-Toolkit (B-
Core (UK) Ltd). B is an industrial-strength method which
has been used in a wide variety of software applications.

To facilitate this, we compare it to a language and method
specifically aimed at capturing planning domain models: the
planning language OCL (object-centred language) and its
platform GIPO (Graphical Interface for Planning with Ob-
jects) (Simpsonet al. 2001)). GIPO is a GUI and tools envi-
ronment for building AI planning domain models in OCL
which supports some validation activities such as consis-
tency and animation. GIPO provides both a graphical means
of defining a planning domain model and a range of val-
idation tools to perform syntactic and semantic checks of
emerging domain models.

Superficially at least, formal specification languages and
planning domain description languages are similar in that
they share

1. the concept of a ‘state’

2. the technique of using pre and post conditions in state
transformation, via operations to specify state dynamics

3. the assumptions of closed world, default persistence and
instantaneous operator execution

4. the presence of state invariants for validity and documen-
tation purposes. State invariants are also used in OCL.

In the paper we use this correspondence to help in the
comparison. In the next sections we apply both B and OCL
methods to the acquisition of the two domains, and finish by
making a comparison of their performance with respect to
validation and consistency checking,

The Blocks World in OCL
As a case study that all planning researchers are aware of,
we use a version of the well known ‘Blocks world’, show-

ing how this can be modelled in both languages, and what
opportunities there are for validation. The version we use
will consist of a table, on which there are a number of
blocks. There are robot arms capable of gripping individ-
ual blocks and moving them from one location to another.
The complete specification is in theResourcesection at
http://scom.hud.ac.uk/planform/.

The object-centred family of languages (OCL) and their
associated development method (embedded in the GIPO
tool) forms a rigorous approach to capture the functional
requirements of classical planning domains. OCL derives
from the work in reference (McCluskey & Porteous 1997).
Originally designed for classical goal achievement planning,
OCLh has been developed for HTN models and PDDL+ –
like models (Simpson & McCluskey 2003). We will use the
basic version of OCL and the tools available in GIPO to sup-
port this.

A specification of the modelM of a domain of interest
D, is composed of sets of:

• sort names and object names: A sort (or object class) is
a set of object identifiers representing objects that share a
common set of characteristics and behaviours. A sort is
primitive if it is not defined in terms of other sorts.Sorts
in the Blocks world areblock andgripper and are both
primitive.

• predicate definitions: (Prds) A predicate fromPrdsrepre-
sents a functional property of an object. Predicates can be
static or dynamic - static predicates include built-in ones
such as ‘ne’ (not equal). ThePrdsof the Blocks world are
in Figure 1.

• invariant expressions on individual sortsExps: this is a
set of invariants which define all the possible “states” that
an object of each sort can inhabit. These are called sub-
states to distinguish them from a world state. An object
description is specified by a tuple (s, i, ss), wheres is a
sort identifier,i is an object identifier, andssan object’s
substate. For example,(gripper, G,[free(G)]) is an object
description meaning that some objectG of sort gripper
is free. Substates operate under aclosed worldassump-
tion local to this restricted set - thus in Figure 1 a block
can either be gripped, stacked on another block and clear,
stacked on another block and not clear, on the table and
clear, or on the table and not clear. For objectblock B,
substategripped(B, G) means that other predicates relat-
ing to blockarenot true: it is not on the table or clear or
on another block.

• general domain invariants: Within OCL general con-
straints linking sorts can be stated and used in
tools. A typical example in the Blocks world is
the assertion “for any blocks B, B1, gripper G,
gripped(B, G), on block(B, B1) is inconsistent”.

• operator schema: An action in a domain is represented
by anoperator schema. Actions or events change objects
substates. An operator shows the set of object transitions
for each object affected by the action. It is specified by
a name, a set ofprevail conditions, a set ofnecessary
changes and a set ofconditionalchanges.

predicates:
on_block(block,block)
on_table(block)
clear(block)
gripped(block,gripper)
busy(gripper)
free(gripper)

invariants of ’block’: an object B must be
described by exactly one of the following
expressions:

gripped(B,G)
on_block(B,B1),clear(B),ne(B,B1)
on_block(B,B1),ne(B,B1)
on_table(B),clear(B)
on_table(B)

Figure 1: The Predicates and Substates of Blocks World

name: grip_from_table
parameters: B - block, G - gripper
prevail - none
necessary transitions -
block, B: [on_table(B),clear(B)]

=> [gripped(B,G)]
gripper,G: [free(G)]

=> [busy(G)])
conditional - none

Figure 2: Operator for Gripping a Block from a Table

Operators in the Blocks world contain only necessary transi-
tions. These show the conditions on objects that must be true
before an action can take place, and specify the new state of
an object after the action has been executed. For example,
thegrip from tableoperator has a necessary transition:

For any block B
[on_table(B),clear(B)] => [gripped(B,G)]

meaning that block B has to be clear and on the table as a
precondition and that its state after the transition is that it is
gripped. An exampleOCLoperator,grip from table, shows
the state changes for two objects, a block and a gripper (see
Figure 2 and Figure 3).

Transitions are only shown for objects which are changed.
By default all other objects are assumed to remain un-
changed. If an object is required to be in a particular state
before the transition but does not itself change, it is included
as aprevail condition. However it is not used in any of the
actions of the Blocks world. The meaning ofconditional
change is thatif a condition on an object is true before an
action takes place,then the object changes to a new spec-
ified state. There are no conditional changes in the Blocks
world domain model.

Validation and debugging in OCL
There are several built-in security checks in OCL. Firstly, the
user has to capture the space of possible descriptions (sub-
states) of an object of each sort within the sort invariants.
Thus world states are formally defined as being a set of le-
gal substates - one for each object declared. This gives an

grip from blocks(B, G):
[on_block(B,B1),clear(B),ne(B,B1)]

=> [gripped(B,G)]
[on_block(B1,B2),ne(B1,B2)]

=> [on_block(B1,B2),clear(B1)]

grip from one block(B, G):
[on_block(B,B1),clear(B),ne(B,B1)]

=> [gripped(B,G)])
[on_table(B1)]

=>[on_table(B1),clear(B1)]

Figure 3: Transitions for Blocks when being Gripped from
a Block

explicit specification of all possible world states, allowing
bugs in state expressions to be prevented. It also restricts
the set of goal expressions to those that are feasible in the
domain. Secondly, the object transitions in operator schema
must conform to the invariants, and hence the transitions are
restricted so that operator schema make objects transform to
a legal state according to the invariant.

These checks are embedded in GIPO, the GUI and tools
environment for building domain models. GIPO prevents
errors being introduced (by restricting values in menus etc)
and in some cases GIPO’s validation checks reveals errors.
Other kinds of validation supported by GIPO include: a
Stepperwhich aids the user to interactively build up a plan,
selecting and applying operator schema for a chosen task;
and aPDDL interface, allowing third party planners to be
bolted on, and their output returned back into a GIPO ani-
mator, so that the user can step through a complete plan.

The Blocks World in B
A specification in B will be constructed from one or more
abstract machines, with the components of a machine being
its variables, invariant, initialisation and operations. A typi-
cal abstract machine state comprises several variables which
are constrained by the machine invariant and initialised. Op-
erations on the state contain explicit preconditions; the post-
conditions are expressed as ‘generalised substitutions’. Fur-
ther information describing B can be found in (Schneider
2001).

Some of the sets and logic notation of B is ‘standard’.
There follows a brief explanation of other parts which may
not be familiar to the reader.
If R is a relation fromS to T andA⊆ S, B⊆ T:
A C R means ‘restricting the domain ofR to setA’;
A−C R means ‘restricting the domain ofR to setS− A’;
RB B means ‘restricting the range ofR to setB’;
R−C B means ‘restricting the range ofR to setS− B’;
If R1, R2 are relations fromS to T:
R1 <+ R2 means ‘domain overriding ofR1 by R2 ’. Hence
on the domain ofR2, the value is given byR2. Outside
dom(R2), the value is given byR1.

In applying B to AI Planning, our strategy was to find a
correspondence between B specifications of planning worlds
and planning-specific languages, hence we used reverse en-

gineering on the OCL model. This gives the correspondence
in Table 1.

OCL B
primitive sorts sets

predicate names variable names
operator schema operations

properties boolean-valued functions
predicates(x,y) relations between x and y

Table 1: OCL - B correspondence

Sets in B translate to ‘primitive sorts’ in OCL. For example
Block, Gripper in B map to corresponding primitive sorts
in OCL;

Boolean valued functions in B map to OCL predicates of
arity one. For example functionOn Table(block) maps to
predicateon table(block) in OCL;

Relations in B whosedomain is the type ofx and whose
rangeis the type ofy (∈ X ↔ Y) map to OCL predicates
of arity 2, pred(x, y). For exampleOn Block ∈ Block
7½ Blockbecomes the predicateon block(block, block) in

OCL. (Note that we have restricted ourselves to domains
capable of being modelled via predicates of arity two.)

The following comprises the B machine header, sets and
variables clauses:

MACHINE BlocksWorld
SETSBlock; Gripper
VARIABLES
On Block, On Table, Clear, Gripped, Free

Note that the predicate ‘Busy’ from OCL is not represented
for it is simply the negation of ‘Free’. This exception was
made to avoid unnecessary replication in the B model. A
fragment is presented in the next subsection. The complete
specification and that of the Tyres World is in
http://scom.hud.ac.uk/scommmw/PlanningDomains/

Invariant and Initialisation of Blocks World in B
The types of the variables were reverse engineered - OCL
predicates of arity one,pred(x) were modelled by B total
functions whosedomainis the type ofx and whoserange
is the booleans. OCL predicates of arity 2,pred(x, y), were
modelled by B relations whosedomainis the type ofx and
whoserange is the type ofy. Modelling in this manner al-
lowed us to take advantage of the fact that in the Blocks
world all the relations were functions and some were 1-1.

A simple initialisation condition (below) was specified -
that each block is on the table, clear and not gripped. The
‘ ||’ stands forparallel substitutionwhere all variable sub-
stitutions are assumed to take place in parallel rather than in
sequence. The idea of a fixed initialisation differs from OCL
where the domain is initialised at the start of each plan.

INITIALISATION
On Block := {} ||

INVARIANT
On Block∈ Block 7½ Block∧ (1)
On Table∈ Block→ BOOL∧ (2)
Clear∈ Block→ BOOL∧ (3)
Gripped∈ Block 7½ Gripper∧ (4)
Free∈ Gripper→ BOOL∧ (5)
∀ blk . (blk ∈ dom On Block⇒ On Block(blk) 6= blk) ∧ (6)
ran On Block∪ dom Gripped= dom (Clear B { FALSE}) ∧ (7)
ran Gripped∩ dom (FreeB { TRUE}) = {} ∧ (8)
ran Gripped∪ dom (FreeB { TRUE}) = Gripper∧ (9)
dom On Block∩ dom Gripped= {} ∧ (10)
dom Gripped∩ dom (On TableB { TRUE}) = {} ∧ (11)
dom On Block∩ dom (On TableB { TRUE} = {} ∧ (12)
dom Gripped∩ dom (Clear B { TRUE}) = {} ∧ (13)
dom Gripped∩ dom On Block= {} ∧ (14)
dom Gripped∩ ran On Block= {} ∧ (15)
dom Gripped∪ dom (On TableB { TRUE})

∪ dom On Block= Block (16)

Figure 4: B Invariant for the Blocks World

On Table:= Block× { TRUE} ||
Clear := Block× { TRUE} ||
Gripped:= {} ||
Free:= Gripper× { TRUE}

Blocks World Operations in B
It is only necessary to have one operation for gripping a
block in B. However,Grip Block On Tablewas represented
plus one operationGrip Block On Block to represent the
two actions required by OCL. (See Figure 5). This was so
that we could compare the representations more closely. For
a similar reason two operations were also specified to release
a block:Put Block On Table, Put Block On Block.

Validation
Reasoning about a formal specification and animation of a
formal specification are both activities concerned withvali-
dation, and these are complementary activities.

A way of reasoning about a formal specification is via the
generation and discharge of ‘proof obligations’. A set of
proof obligations involvingconsistency propertiesof a sys-
tem can be automatically generated by the BTool. An exam-
ple of two of these is (1) Consistency of initialisation: the
initialisationmustestablish the invariant. (2) Consistency of
operation: each operation mustpreservethe invariant. Other
consistency properties involve the static parts of the machine
(sets, constants, properties etc.). It is also possible to check
the machine invariant during animation.

The B-Toolkit includes an animator to ‘execute’ opera-
tions, and a proof tool to check that proof obligations are
met. The Blocks world in B was validated using the B-
Toolkit. Each new version was animated to check for er-
rors. The version was run for each operation with the invari-
ant displayed and this provided a quick method for rooting
out errorsbeforethe prover was used. The proof obligation
generator and prover were then run - in all 72 proof oblig-
ations were generated with 40 undischarged by the prover -

these were subsequently hand-checked, which was a labo-
rious process. During this procedure the invariant was fre-
quently scanned and it was discovered that an unnecessary
conjunct was present in the original versions:
ran (On Block) ∩ dom (Clear B { TRUE}) = {}
was found to be already covered by (7) and (13).

As part of the checking process of the two models, we ran
one of the planners in GIPO on a particular task, and then
simulated this in the B-Toolkit using the animator. We used
the well-known task (in AI planning literature), the Sussman
Anomaly, as shown in Figure 6. This solution was obtained

1

2

3

3

21

Goal StateInitial State

Figure 6: Initial and Goal States

from one of the planners:

grip_from_one_block(block3,block1,tom)
put_on_table(block3,tom)
grip_from_table(block2,tom)
put_on_one_block(block2,tom,block3)
grip_from_table(block1,tom)
put_on_blocks(block1,tom,block2,block3)

It was obviously not possible to generate an automatic se-
quence of operations using the B-Toolkit - as in the case of

Grip Block On Table (blk , grp) =̂
PRE

grp∈ dom (FreeB { TRUE})∧
blk ∈ dom (Clear B { TRUE}) ∧
On Table(blk) = TRUE

THEN
Free(grp) := FALSE||
Clear (blk) := FALSE||
On Table(blk) := FALSE||
Gripped(blk) := grp

END

Grip Block On Block (grp , blk) =̂
PRE

grp∈ dom (FreeB { TRUE}) ∧
blk ∈ dom (On Block) ∧
blk ∈ dom (Clear B { TRUE})

THEN
On Block := { blk } −C On Block ||
Free(grp) := FALSE||
Clear := Clear <+ { blk 7→ FALSE, On Block(blk) 7→ TRUE} ||
Gripped(blk) := grp

END Put Block On Block (blk1 , grp) =̂
PRE

grp = Tom∧
blk1∈ Block∧
Gripped(blk1) = grp∧
Free(grp) = FALSE

THEN
Free(grp) := TRUE||
Gripped:= {} ||

ANY blk2
WHERE

blk2$ in Block∧
Clear (blk2) = TRUE
THEN

On Block(blk1) := blk2 ||
Clear := Clear <+ { blk1 7→ TRUE} <+ { blk2 7→ FALSE}

END
END

Figure 5: Operations in B

the planner. However the equivalent of the ‘Sussman Anom-
aly’ configurations was achieved by commencing from the
initial state and placing block 3 on block 1, as shown in
the following animation (where * means the variable has
changed):

* On_Block {block3 |-> block1}
On_Table {block3 |-> FALSE ,

block1 |-> TRUE ,
block2 |-> TRUE ,

block4 |-> TRUE ,
block5 |-> TRUE ,
block6 |-> TRUE ,
block7 |-> TRUE}

* Clear {block1 |-> FALSE ,
block3 |-> TRUE ,
block2 |-> TRUE ,

block4 |-> TRUE ,
block5 |-> TRUE ,
block6 |-> TRUE ,
block7 |-> TRUE}

* Gripped {}
* Free {Tom |-> TRUE}

The desired final state was achieved using the operations

Grip_Block_On_Block (block3, Tom)
Put_Block_On_Table (block3)
Grip_Block_On_Table (block2 , Tom)
Put_Block_On_Block (block2)

(Local Variable blk2 in ‘ANY’ set to block3)
Grip_Block_On_Table (block1 , Tom)
Put_Block_On_Block (block1)

(see Figure 5) with end state:

* On_Block {block2 |-> block3 ,
block1 |-> block2}

On_Table {block1 |-> FALSE ,
block2 |-> FALSE ,
block3 |-> TRUE, .. }

* Clear {block2 |-> FALSE ,
block1 |-> TRUE ,
block3 |-> FALSE, .. }

* Gripped {}
* Free {Tom |-> TRUE}

Tyres World Case Study
We used a similar strategy (i.e. reverse engineering in mod-
elling variables) when we modelled the ‘Tyres World’ in B.
The Tyres world involves the changing of a faulty wheel us-
ing a wrench and a jack, both of which are (usually) initially
in the car boot. Wheel changing involves loosening and re-
moving wheel nuts, then changing the wheel. The wrench,
jack and spare wheel must be available when required and
the actions must take place in the correct order. The objec-
tive of the case study was (first) as a preliminary investiga-
tion into the relationship between B and OCL and (second)
to test the adequacy of the validation tools (fully described
in (West & Kitchin 2003)). The ‘Tyres World’ domain (Rus-
sell 1992) was chosen because, in the field of Planning, it is
a well-known and well-used model that is unlikely to have
any hidden errors. In the case of OCL, two wheels, hubs and

their attached nuts were modelled plus a spare wheel in the
car boot. The additional wheel (as compared with the ‘usual’
model in (Russell 1992)) was introduced so that extra valida-
tion checks could be introduced. In contrast, in the B model
four wheels plus hubs and nuts were modelled, although as
it turned out, two would have been sufficient. Actions in
the OCL model include ‘opening the car boot’, ‘loosening
the nuts’, ‘removing the wheel’ etc. and the B specification
contained operations equivalent to these. Some exceptions
were made where simplifications were possible in B; an ex-
ample is the use of a single operation for ‘fetching a tool’.

The approach was the deliberate introduction of equiva-
lent errors into both the B and OCL models to see if the
use of the stepper/animator and validation checks and proof
tool, would identify these faults. Various tasks were tried
out in GIPO using both the stepper and planning engines to
see if errors and inconsistencies in the domain model were
detected, and to compare its performance with that of the
B-Toolkit. Validation checks in GIPO include checks on op-
erators and checks on tasks. Thus operators must consist of
legal expressions with respect to invariant expressions on the
individual sorts; and initial states and goal expressions must
likewise consist of a legal substate expressions.

Figure 7: Task and Plan for changing a wheel

A screen-shot of GIPO (Figure 7) shows a plan generation
for a task: initially all the tools and spare wheel (wheel2) are
in the car boot and the goal is a change of wheel (wheel1).
The next section describe the errors introduced and the re-
sults of validation for each of the two tools.

Challenging the Models
Errors in the initial state We introduced errors such as the

obviously incorrect state of two wheels on a single hub.
The result for the OCL model was that GIPO did not ob-
ject to this inconsistent initial state - no errors were found

by the validation checks. When tried with a planner (FF
(Hoffmann 2000)), it reported that the goal was impossi-
ble. Another initial state was created in which the nuts
were on one of the hubs but no wheel was on that hub.
The other hubs were in a correct state. This inconsistency
is not found by the validation checks in GIPO. The user
can find it by using the stepper or using a planner that in-
corporates such checks: FF for example reports that the
goal is impossible. This uncovered a simple insecurity in
the GIPO tool itself - although individual sort invariants
were actively used in its tools, the general domain invari-
ants were not being used to check state validity.
The errors were introduced in the B model by altering the
initial state. Both of these errors introduced inconsistency
in the B specification - of the initial state with respect to
the invariant. They were discovered by the B-Toolkit most
simply by using the animator. However the proof tool also
provided a check.

Errors in setting tasks Errors were introduced in the OCL
task description within GIPO. These involved an attempt
to reach an illegal state (i.e. one which was inconsistent
with the domain model). One example involved jacking
up two hubs using the same jack. Again the validation
checks of GIPO don’t report an impossible task. When
tested, the FF planner very quickly says the problem is
proven unsolvable. It was subsequently discovered that
the domain model in OCL did not contain the ‘inconsis-
tency constraint’ in the prohibition of the jack on two dif-
ferent hubs.
Of course there is no equivalent function of ‘setting a task’
in B so in order to correspond with the GIPO task, a sin-
gle operation, of attempting to jack up a wheel where the
jack is already in use on a different wheel was tried using
the animator. However the invariant of the Tyres World B
specification was such that there is a 1-1 relationship be-
tween a wheel hub and a jack - and the operation ‘JackUp-
Car’ supported this in its precondition that the jack should
not be in use already and an error was generated.

Errors in pre- and postconditions Prevail conditions in
OCL are pre-conditions that persist - that is, the ob-
ject concerned does not change state during the opera-
tion. An example of this would be the prevail condition
havewrenchof theloosenoperator: in order to loosen the
nuts we must have the wrench - and we will still have the
wrench after the nuts have been loosened. We removed
the havewrenchprevail condition from theloosenoper-
ator. This error, as expected, was not detected by vali-
dation checks, but became apparent when using GIPO’s
stepper. The operator was not able to be applied because
the wrench was not available. This type of error does not
affect overall consistency of the domain model, but is just
concerned with a specific object being part of a particular
operation.
In the case of the B model there was no problem with
contravention of the pre-condition and no problem with
the invariant. (Note that the OCL prevail condition can be
modelled as a pre-condition in B as, by default, any vari-
able for which there is no substitution does not change.)

The error is only demonstrated by the showing of a ‘silly’
result in that the wrench is still in the car boot. This
is a ‘domain-specific’ error which could only have been
demonstrated by animation.
Because of the manner in which actions are described in
OCL - by the change in state of individual objects - it was
similarly not possible for a ‘post’ condition to be removed
on its own. For example: for the operatorfetch jack the
jack object changes state from being in the car boot (pre-
condition for the transition) to being available for use
(post-condition for the transition). In an attempt to in-
troduce this kind of error, we removed the transition for
the ‘jack’ object from the ‘fetch jack’ action. The error
became apparent when using the stepper.

The experiments also uncovered a previously unknown
omission in the B model - a missing precondition for putting
away the tyre.

Comparison of Operations
Two operations in B are compared with the equivalent ac-
tions in the OCL model.

Gripping a Block from the Table If we compare the op-
erationGrip Block On Table in B with its equivalent in
OCL (Figures 5 and 2) we see the same pre and postcondi-
tions. However they are structured differently in OCL where
the precondition for each object is an appropriate substate
from the substate classes:

1. The precondition that the block is on the table and clear
becomes the left hand side of the necessary condition for
the block.

2. The precondition that the gripper is free becomes the left
hand side of the necessary condition for the gripper.

3. The substitution in B for the block, that it is gripped, be-
comes the right hand side of the necessary condition for
the block. However in B it is stated explicitly that the
gripped block is no longer on the table and not clear. In
OCL this is assumed from the substate.

4. The substitution in B that gripper is in use becomes the
right hand side of the necessary condition for the gripper.

Gripping a Block from a Block Comparing B and OCL
versions of ‘gripping block1 from block2’, (Figures 5 and 3)
we see that there is a change in the state of both blocks after
the operation. For B, it is enough to state that block2 is now
clear. However for OCL this is not enough and we must dis-
tinguish between 2 substates - where block2 is on the table
and where block2 is on another block. Since we have made
a change in the state of block2 we must be precise about the
whole of its state. The different outcomes for block2 give
rise to the two actions in OCL. As in the previous operation,
what is implicit in OCL must be explicit in B. Thus we must
say that the gripped block is no longer free.

A Comparison of the use of B and OCL to
acquire planning domain knowledge

Here we summarise the results of our comparison:

1. The B language and toolkit is an industrial strength formal
specification and development method, whereas OCL is a
tool used in research and education. The exercise showed
some problems with GIPO - in particular that its static val-
idation checks should be extended to test the consistency
of the initial state and goal expressions against the general
domain invariants.

2. B allows the user to encode more precise details about the
relations in the domain than GIPO - they can be be rela-
tions, 1-1 functions etc. This level of precision is certainly
not available in most planning languages, and is attractive
in safety-related applications.

3. As OCL is aimed specifically at planning, it has inbuilt
structures and mechanisms that anticipate the entities that
are to be represented. This makes the encoding rather
more compact than the B specification. Encoding in B,
as one would expect from a general language, one is left
with more choices and decisions in the encoding process.
The correspondence we used in our case reduced the en-
coding choices, but still the B encoding is rather ’flat’ in
that the invariant list contains all predicate and invariant
information.

4. Both languages assume default persistence and a closed
world. The differences in this respect are subtle, in that
in B a variable involved in a precondition remains unal-
tered by default. However in OCL a ‘prevail’ is required
if precondition variables are unchanged.

5. Regarding validation and debugging, both languages have
effective, automated tool support which performs vali-
dation/consistency checks and identifies the presence of
bugs. Not surprisingly, the B toolkit was more reliable
at finding inconsistencies in some cases, as it demands a
more detailed specification.

To further explore the comparison, we show how, in the
Blocks world, the OCL specification of substates can be de-
rived from the B invariant conjuncts (1–16) in Figure 4. We
observe that the following three sets are disjoint and ‘parti-
tion’ Block:

dom(Gripped),
dom(On Table) B {TRUE},
dom(On Block)

Although the partition is not the same as the substate parti-
tion in OCL, it is possible to obtain an equivalent partition if
we first note that:
dom(ClearB {TRUE}) and dom(ClearB {FALSE}) parti-
tion Blockand we have

domOn TableB {TRUE} = domOn TableB {TRUE} ∩
(domClearB {TRUE}) ∪ (domClearB {FALSE})

and from (10) the partition now becomes:

domGripped,

(domOn TableB {TRUE}) ∩ (domClearB {TRUE}),
(domOn TableB {TRUE}) ∩ (domClearB {FALSE}),
domOn Block.

This can be made explicit and in a similar format to the
OCL version using conjuncts from the invariant. For ex-
ample from (2):

domOn Block∩ (dom(ClearB {FALSE}) =

domOn Block∩ (dom(ClearB {FALSE}) ∩ Block=

domOn Block∩ (dom(ClearB {FALSE})∩
(domOn TableB {FALSE} ∪ domOn TableB {TRUE}) =
domOn Block∩ (dom(ClearB {FALSE})
∩(domOn TableB {FALSE}

In a similar manner using other conjuncts, this set can be
equivalently expressed:

domOn Block∩ (dom(ClearB {FALSE})
∩(domOn TableB {FALSE}
∩ (Block− domGripped)

This, with (6) can be expanded out:

∀blk1 ∈ Block.(∃blk2 ∈ Block.(On Block(blk1) = blk2

∧ blk1 6= blk2 ∧ Clear(blk1) = FALSE))

. . .

which is equivalent to the substate

[on_block(B,B1),ne(B,B1)],

given the local closed world assumption.

Conclusions
In this paper we have investigated the use of a formal method
to capture planning domain models. We have compared
the method (together with its commercially-available tool
support) with a planning-oriented method. The compari-
son shows a remarkable similarity between the two. The
advantages in using a method such as B are that it is math-
ematically based so that formal reasoning can be used to
deduce desirable (and potentially undesirable) properties.
Support for the method is available via tools - such as the
Toolkit. However, the disadvantages are that there are no
special planning - oriented features, and that the B specifica-
tion, once validated, would have to be translated into a more
planner-friendly language in order to be used with current
planning engines.

References
B-Core (UK) Ltd. http://www.b-core.com/.

Hoffmann, J. 2000. A Heuristic for Domain Independent
Planning and its Use in an Enforced Hill-climbing Algo-
rithm. In Proceedings of the 14th Workshop on Planning
and Configuration - New Results in Planning, Scheduling
and Design.
McCluskey, T. L., and Porteous, J. M. 1997. Engineer-
ing and Compiling Planning Domain Models to Promote
Validity and Efficiency.Artificial Intelligence95:1–65.
Munoz-Avila, H. M.; Aha, D. W.; Nau, D.; Weber, R.;
Breslow, L.; and Yaman, F. 2001. SiN: Integrating case-
based reasoning with task decomposition. InProceedings
of the Seventeenth International Joint Conference on Arti-
ficial Intelligence, 999–1004.
Penix, J.; Pecheur, C.; and Havelund, K. 1998. Using
Model Checking to Validate AI Planner Domain Models.
In Proceedings of the 23rd Annual Software Engineering
Workshop, NASA Goddard.
Russell, S. 1992. Efficient memory-bounded search algo-
rithms. InProc. ECAI.
Schneider, S. 2001.The B-Method: An Introduction. Pal-
grave.
Simpson, R. M., and McCluskey, T. L. 2003. Plan Author-
ing with Continuous Effects. InProceedings of the 22nd
UK Planning and Scheduling Workshop (PLANSIG-2003),
Glasgow, Scotland.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett, R. S.;
and Doniat, C. 2001. GIPO: An Integrated Graphical Tool
to support Knowledge Engineering in AI Planning. InPro-
ceedings of the 6th European Conference on Planning.
West, M. M., and Kitchin, D. E. 2003. Testing Domain
Model Validation Tools. InProceedings of the 22nd Work-
shop of the UK Planning and Scheduling SIG, Glasgow.

