EVALUATION OF CUTIMED® SORBACT®: CLINICAL CASE STUDIES

Introduction

Chronic wounds are characterised by a high bacterial count, the presence of more than one bacterial strain, the increased tendency to harbour drug-resistant organisms and the presence of biofilms (Vowden et al, 2008). This can delay wound healing and make these wounds difficult for nurses to manage. Cutimed Sorbact dressings irreversibly bind bacteria and fungi and offer an alternative approach to the management of bioburden (Hampton, 2007; Kammerlander et al, 2008). Cutimed Sorbact dressings are coated with a fatty acid derivative DACC (dialkyl carbamoyl chloride), providing the product with strong hydrophobic properties. Wound pathogens also have hydrophobic characteristics, therefore they become irreversibly bound to the fibres of the dressing in a moist wound environment. Cutimed Sorbact has no local antiseptic or antibiotic agent impregnated into the dressing. This is a useful innovation as there is no donation of chemicals, which could lead to resistance or adverse side effects. This means the dressings can be safely used for longer than a 2 week period (Haycocks, 2011).

Method

A Cutimed Sorbact evaluation was undertaken on two patients within the vascular clinic. The patients chosen for the evaluation were showing a lack of healing progression which was thought to be a result of high bacterial load.

Case Study One

Mr S underwent amputation of his right great, 2nd and 3rd toes due to diabetic neuro / ischaemia ulceration; at the time of amputation he had undergone successful revascularisation. The majority of the wound healed well but the lower end of the wound dehisced leaving an open area of approximately 4 x 3 cm which became sloughy. Within two weeks the slough was successfully debrided with the use of moist hydrofibre but then healing became static with no evidence of advancing wound edges (Fig.1). The wound bed was clean but had fragile granulation tissue and some malodour, therefore it was thought that high bacterial load was hindering wound healing. Topical silver dressings were used but with little effect. He was seen in the Vascular Clinic 8 weeks post amputation and was commenced on Cutimed Sorbact with the aim of reducing the bacterial load and promoting healing.

Results

After using Cutimed Sorbact for only 2 weeks, the bacterial load appeared to be reducing and the wound edges started to advance, after 6 weeks use the wound had almost completely healed (Fig.2).

Case Study Two

Mrs T underwent left forefoot amputation due to a severe diabetic foot infection. Magnetic Resource Angiograms were undertaken and showed that there was no significant evidence of peripheral arterial disease. The wound dehisced on the lateral edge on removal of sutures. In clinic 10 weeks post amputation there was evidence of superficial slough and the wound had moderate levels of exudate which had a significant malodour; the wound edges appeared static. The wound had been previously dressed with cadexomer iodine paste which did not appear to be controlling the bacterial level to allow healing to occur; therefore Cutimed Sorbact was commenced (Fig.3).

Results

Within 2 weeks of commencing Cutimed Sorbact there was evidence of improvement on the wound bed and at review 6 weeks later total healing had occurred (Fig.4).

Conclusion

Cutimed Sorbact was found to be an effective treatment for the management of wounds showing signs of delayed healing due to increased bacterial load. In these case studies Cutimed Sorbact was found to be effective where other antimicrobial dressings failed to have an impact on wound healing. Furthermore, often high risk or hard to heal patients require longer antimicrobial therapy than the currently recommended 2 weeks duration (Wounds UK, 2010). Due to the fact that Cutimed Sorbact dressings do not donate any chemicals into the wound bed it could therefore be a useful tool for those wounds that require longer antimicrobial therapy.

References


