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A Meta- CSP Model for Optimal Planning
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University of Strathclyde
Glasgow, UK

{firstname.lastname}@cis.strath.ac.uk

Abstract. One approach to optimal planning is to first start with a sub- optimal
solution as a seed plan, and then iteratively search for shorter plans. This approach
inevitably leads to an increase in the size of the model to be solved. We introduce
a reformulation of the planning problem in which the problem is described as a
meta- CSP, which controls the search of an underlying SAT solver. Our results
show that this approach solves a greater number of problems than both Maxplan
and Blackbox, and our analysis discusses the advantages and disadvantages of
searching in the backwards direction.

1 Introduction

Optimal AI planning is a PSPACE- complete problem in general. For many prob-
lems studied in the planning literature, the plan optimisation problem has actually been
shown to be NP- hard [1, 2], whilst the plan existence problem is sometimes only poly-
nomial time. For many years, optimal planning has really referred to Graphplan [3]
based planners. Successful optimal planners since Graphplan, have relied on its plan-
ning graph structure. Notable examples that have also relied on its search strategy are
IPP and STAN [4, 5]. SAT based planners, including Blackbox [6], have relied on the
planning graph structure, but not the original Graphplan search strategy. These planners
convert the planning graph into a SAT model and then allow a SAT solver to search the
equivalent SAT instance. One part of the Graphplan search was always kept with these
planners, and that was the direction of search. Graphplan constructs the planning graph
forwards, until all goals appear non- mutex. It then tests if a solution exists, and if not,
then it extends the planning graph by a layer and checks again. This process is repeated
until the first satisfiable, and optimal, layer is reached.

Maxplan [7] took a different approach to this idea. It initially finds a suboptimal plan
using the planner FF [8], and uses this distance as an initial seed length. It then generates
the SAT model for the previous length and tries to find a satisfying assignment. Once
a satisfying assignment is found, then the previous layer is searched. This process is
repeated until the first non- satisfying layer is found. This model relies on FF finding
a solution initially, but since the problem of plan existence is often easier than that of
plan optimisation, then it is assumed that if a sub- optimal plan cannot be found, then
the chance of finding the optimal one are highly limited. It could be asked as to why
we would want to plan in this direction when it inevitably leads to larger models than
before. The justification is that it makes better use of the underlying SAT technology.



Namely, learnt clauses can be shared between layers, if they are still in the context of
the previous layer when a satisfying assignment is found.

A problem with this approach is that often finding plans at suboptimal lengths means
building redundancy into plans. However, discovering these redundant paths in plans is
just as hard as finding a path that actually achieves something. If a goal is achieved
early in a plan, there is nothing to prevent the SAT solver from reversing its choice and
then later re- achieving the same goal. Especially because the SAT solver has no way of
distinguishing real actions and noops (actions that maintain a fact’s truth between two
timesteps). This leads to redundant search, and leads the SAT solver to explore areas of
the search space that are not interesting in terms of solving the problem. We introduce
a Meta- CSP reformulation of the planning problem in which the variables represent
the final achievers of goals. The values in those variables represent the actual possi-
ble final achievers of the goals, as the SAT variables that represent them. We compare
the performance of this model with Maxplan and Blackbox. Maxplan provides the best
comparison for the meta- CSP model as it uses a traditional SAT encoding with a back-
wards direction of search, so any performance difference can be directly attributed to
the model. The comparison with Blackbox is slightly less straightforward as the direc-
tion of search is different. It will provide some comparison between the two directions
of search and provide arguments for when each is more effective.

In Section 2 we introduce the planning problem, the planning graph, and the trans-
lation of the planning graph into a SAT formulation. The meta- CSP model is described
in detail in Section 3, comparing it Maxplan and Blackbox in detail. Section 4 and
Section 5 show and analyse extensive empirical results from three different problem
domains. Section 6 discusses related work and how performance of the model could be
improved in the future.

2 Background

Planning is one of the fundamental problems in Artificial Intelligence. The ability to
plan and to reason causally and temporally is one of the key features of intelligent
behaviour. The planning problem can be defined in the following way:

Definition 1. A STRIPS planning problem P = (O, I,G) has three parts: a set of
operators O, a set of conjoined facts I that represent the initial state and another set
of conjoined facts G that represent (a partial coverage of) the goal state.

The planning problem is to find a set of actions that transforms the initial state into
a state where all of the goal facts are true. An action is a particular instantiation of an
operator. An operator itself has three parts: a set of facts pre that represent the precon-
ditions that have to be true before an action is executed, a set of facts add (commonly
known as the add list) which is the set of facts that are added after an action is com-
pleted, and a final set of facts del which represents the facts that are removed from the
state when an action is executed. The facts in the operators contain free variables that
have to be instantiated for an action to be performed.

Planning problems in the real world include areas as diverse as robotic control,
logistics and airport scheduling. Solutions to planning problems can be of any length.



This is one quality of planning problems that makes them difficult to solve. As the
optimal length of a plan isn’t known beforehand, a single CSP cannot be constructed
that certainly finds a plan. However, a series of CSPs can be solved that eventually find
a solution.

A constraint satisfaction problem (CSP) P is defined as a triple, (X,D, C). X is
a finite set of n variables, X = {x1, x2, ..., xn}. D is a finite set of domains, D =
{D(x1), D(x2), ..., D(xn)}, such that D(xi) = {vi1 , vi2 , ..., vim} is the finite set of
possible values for variable xi and C is the set of constraints C = {C1, C2, ..., Cm}.
A constraint Ci is a relation over a subset of the variables Si ⊆ X that represents the
assignments to the variables in Si that are legal simultaneously. If Si = {xi1 , ..., xil

},
then Ci ⊆ Di1 × ...×Dil

.
An assignment to a variable is a pair 〈xi, v〉 such that (v ∈ D(xi)), meaning

variable xi is assigned the value v. A solution S to a CSP P is a set of assignments
S = {〈x1, v1〉, 〈x2, v2〉, ..., 〈xn, vn〉}, such that all constraints in C are satisfied.

2.1 Graphplan and SAT Planning

The Blackbox planner solves planning problems by translating them into a series of
SAT instances. Blackbox uses an intermediary representation in its translation to SAT.
This was introduced in 1995 in the Graphplan planner [3], and it is called the planning-
graph. It is hard to exaggerate the impact that Graphplan has had on the field of plan-
ning. The benefit it gave was that of an exponential space compression of the search-
space through the planning- graph structure. The planning- graph construction algo-
rithm is given in Algorithm 1. The planning- graph is a layered graph. It has alternating
action layers and fact layers. The first of these is a fact layer, with all of the facts from
the initial state. The first action layer contains all actions that can be achieved by apply-
ing actions to the initial state. In addition, at each action layer, there is a special action
for each fact in the previous fact layers, called a noop (short for no-operation). A noop
action maintains the truth of a fact between layers; if no fact deletes or adds a fact, then
it is supported by a noop. The second fact layer contains the union of the first fact layer
and the facts achieved by the first action layer. This process continues in the same way
from there.

Algorithm 1 The Planning- Graph Construction Algorithm
f-layer0 ← I
l← 0
while Any two goals are mutex or f-mutex(l) 6= f-mutex(l − 1) do

a-layerl+1 ← actions achievable at f-layerl
f-layerl+1 ← facts achieved by a-layerl+1

a-mutex(l + 1)← {(a1, a2) | p ∈ dela1 , (p ∈ prea2 ∨ p ∈ adda2}∪
{(a1, a2) | p1 ∈ prea1 , p2 ∈ prea2 , (p1, p2) ∈ f-mutex(l)}

f-mutex(l + 1)← {(f1, f2) | all achievers of f1 and f2 are mutex}
l← l + 1

end while



At each layer of the graph, a set of mutual- exclusions (mutexes from here) are
calculated. These are relationships between two facts or actions, meaning they cannot
both be true at the time associated with the level of the planning- graph. For example,
the actions sit down and walk away will always be mutex, as one can’t perform both at
once. Whether or not other actions such as walk away and swing umbrella are mutex
depends on whether time has passed such that both can be achieved simultaneously.
Two facts are mutex if all of their achievers are mutex. Two actions are mutex if either
of the following conditions hold:

– One action deletes one of the other’s preconditions or effects. This is the case with
sit down and walk away since both have the precondition standing still.

– One of the actions has a precondition that is mutex with a precondition of the second
action.

When the number of mutexes in two successive layers is equal, it is said that the fix-
point is reached. If the graph construction continues until the fixpoint and there are still
goals remaining that are mutex, then there can be no solution. Since no more mutexes
will be eliminated, then the two goals can never be satisfied at the same time. If at some
level l, the goals appear non- mutex with each other, then there may be a solution, and
the planning- graph can be searched. Graphplan used a backtracking search, starting
with the goals and working backwards through the planning- graph. If no plan is found
then the graph is extended to length l + 1, and so on. Blackbox provides a translation
of the planning- graph into a SAT model. The motivation behind the translation is that
the SAT model can then take advantage of any new advances in SAT solving technol-
ogy, with no extra work required. To convert the planning- graph into CNF, firstly the
structure (fact and action layers) have to be represented. And secondly, the constraints
(effects and mutexes), also have to be represented. Each fact and action, at every layer, is
represented by a SAT variable. If a fact is true at some time point, then the SAT variable
representing it is also true. The same is true of actions: if a SAT variable representing
an action is true, then that action is part of the plan.

The goals and the initial state can be specified as unit clauses. Each action implies
its preconditions: that is, if an action is made true, then its preconditions are forced true.
If some action a has pre = p1, p2 then clauses (¬a∨p1) and (¬a∨p2) are added to the
model. Facts also imply that they have an achiever. For all of the achievers of a fact, f
including a noop if available (a1 . . . an, say), clause (¬f ∨a1∨ . . .∨an) is added. This
ensures that each fact is achieved by something at each layer, even if that something is a
noop. A mutex between two facts or actions x and y in the planning graph is represented
by the clause (¬x ∨ ¬y) in the SAT model.

2.2 Maxplan

Maxplan uses the same encoding as Blackbox, but diverges from the traditional direc-
tion of search employed by Graphplan derived planners. Instead of starting search at
the first layer that the goals appear non- mutex, Maxplan starts search at a higher layer.
It is initialised by a seed plan, generated by a sub- optimal planner. Once a plan is
found then Maxplan iteratively searches for shorter plans, until the shortest is found.



One advantage to this search strategy over Blackbox is that it is in some sense an “any-
time” planning strategy. If it fails at some point due to resource restrictions, then so
long as the sub- optimal planner returns a solution, then at least a plan is returned, even
if sub- optimal. The planner MaxPlan plans in this way and it retains the same model as
BlackBox. It also adds “londex constraints”, these are long- distance mutual exclusion
relationships. In the Graphplan model, mutexes only act between facts or actions at the
same layer, londex constraints act between different layers, hence long- distance. These
constraints are not included in the meta- CSP model.

3 The Meta- CSP Model

The contribution of this work is to introduce a new constraint formulation of the plan-
ning problem. This model is a higher level description than the SAT description, it
captures a concept that the SAT model does not, that of final achievement of a goal.
This is important because in a planning problem, the first time a goal is achieved, may
not be the final time it is achieved. Because of this, once a goal is achieved, the planner
has to enforce its noops explicitly until the end of the plan.

Definition 2. Given a planning problem, P = (O, I,G), the meta- CSP encoding is a
CSP in which |X| = |G|, where Di = {a | gi ∈ add(a)}. The only constraints on the
model are those implied by the underlying SAT encoding.

The meta- CSP model has a variable for each goal, gi ∈ G, each variable’s domain
contains the possible achievers of gi. These are the actions for which gi is in the add
list. An assignment, 〈xi, a〉, in the meta- CSP means that a is the final achiever of gi

and no actions that delete gi may appear later in the plan than a. The meta- CSP solver
describes the planning problem on two levels. The first level is the original BlackBox
formula, the second is the meta- CSP level, just described, where assignments to vari-
ables represent the final achievers of goals.

3.1 Meta- CSP Search

To design a search algorithm, the structure of the model and the analysis that led to its
conception have to be considered. The motivation behind this model was an analysis
of the backdoors of planning problems at satisfiable levels of the planning- graph. This
means that the majority of search should be focused on satisfiable instances. BlackBox
searches forwards, exactly like Graphplan, from the fix- point layer forwards to the op-
timal layer. Planning forwards in this manner seems incompatible with the meta- CSP
model since all but the final layer will be unsatisfiable. In rejecting this option, the only
alternative is search backwards. From some known satisfiable layer, search for a solu-
tion in the previous layer. If no solution exists at some layer then the last plan found
must be optimal. The fact that a planner could search in this direction, highlights an
important point about planning research. There is almost without exception an assump-
tion that the problem is satisfiable. If it were not for this assumption, then the idea of
planning backwards would be pointless as the level at which to start planning may never
be found.



One potential complication is solved by the original Graphplan representation: that
of problems not having monotonically satisfiable plan lengths. For example, a problem
may have solutions at length five, but not at length six, and then again at length seven.
When searching backwards, it may seem intuitive that search would stop when no plan
at length six is found (and hence mistakenly inferring that the optimal plan is in fact
length seven). However, the noops in the plangraph structure mean that even if there is
a plan at an earlier level, but not at the current one, it can be found by enforcing the
noops to maintain the state at the end of the plan. The meta- CSP solver searches in the
same backwards direction as MaxPlan. For this purpose, it is required to know an upper
bound for which it is known a plan exists. The chosen method for finding this length is
by using the sub- optimal planner FF. FF can find reasonable quality plans very quickly.
The length of this plan can be used to initialise backwards search. One advantage that
this method brings is that it can also provide a candidate goal ordering.

If the goals contain a necessary goal ordering, the order will be revealed in any
valid plan. If the plan is of high quality then it is possible that it reveals important
resource allocation and scheduling decisions. This constitutes the seeding process. The
next step is the actual search. Although the mechanics of search (propagation, clause
learning, etc) still operate in the SAT solver, the key decisions are made at a lifted
level in the meta- CSP solver. There is an interleaving between the SAT solver and the
meta- CSP solver. The SAT solver will request a decision from the meta- CSP. The
meta- CSP solver will then return a decision about what the next choice should be in
the SAT solver. The SAT solver applies this decision and propagate the outcome. There
are then two possibilities from here: the first being conflict. In this case, the meta- CSP
backtracks, and a new decision is requested. The alternative is that the decision does
not lead to conflict, in which case the next decision is requested from the meta- CSP.

FF

d p

d p

achievers

orderC
N

F

BlackBox

Solver

Meta− CSP

Solver
SAT

Fig. 1. Architecture of the meta- CSP solver.



During this process, it is possible that the meta- CSP has assigned to all of its vari-
ables but the SAT solver still has unassigned variables. In this case, the meta- CSP sub-
mits to the default decision- making process of the SAT solver. When the SAT solver
backtracks, it triggers a backtrack in the meta- CSP, so long as the decision backtracks
as high as the last meta- CSP decision. Clearly, if the meta- CSP returns no solution,
then there must be no solution since if no combination of potential goal achievers leads
to a successful plan, there must be no plan. The complete architecture of the system is
shown in Figure 1. The algorithm relies on three programs: the planner FF, a modified
version of Blackbox that outputs both CNF and information about possible goal achiev-
ers and a modified version of the zChaff SAT solver, controlled by an added meta- CSP
solver. The planner provides an upper- bound, l, to plan down from, and a goal ordering.
Blackbox then calculates the CNF at length l, and separately outputs the variables that
represent:

– The potential final- achievers of each goal and
– the noops that would enforce a particular achieved goal until the end of the plan.

Then the meta- CSP solver orders its variables as they were achieved in the seed
plan. It then solves the problem and returns the optimal plan.

4 Results

The following section describes the experimental setup to test the performance of the
meta- CSP solver described in Section 3. All of the experiments are performed on a
dual- core Intel Pentium D 3.40GHz desktop computer. The meta- CSP solver will be
compared against the performance of Maxplan and Blackbox. The performance of each
planner will be measured in time taken to solve each problem. The time is taken to be
user- time + system- time, and is limited to a total of 1800 seconds (half of one hour).
Although the computer has 2GB of memory, the planners are limited to using 1.5GB.
The justification behind this is that if a program approaches 2GB, then CPU usage drops
significantly as the planner starts to swap memory. It then becomes very unlikely that
either a plan will be returned or that the CPU time will timeout without an unreasonable
wait.

Blocksworld, Grid and Driverlog are the three domains that have been selected to
test the meta- CSP solver. These will be described in the following sections. Graphs of
the results for all of the problem instances are also shown. The graphs are log- scaled
on both axes. Since the meta- CSP solver time is the x- axis and the competing planner
is the y- axis, any point plotted above the line y = x constitutes a “win” for the meta-
CSP solver (as it denotes the competitor took a greater time). To ease the discernment
to the eye, the line y = x is also plotted.

4.1 Blocksworld

The Blocksworld problem is a massive part of the planning literature and its history.
Although much studied (and occasionally derided), it retains interest because of its



interesting structural properties and its simplicity. The form of Blocksworld studied in
this work consists of a table on which any amount of stacks of blocks can be made. The
initial state and goal state are two different configurations of the blocks, the problem
is to rearrange the blocks into the goal configuration. The problem is clearly easy to
satisfy: one approach could just be to unstack all of the blocks onto the table and then
stack them into the goal configuration. However, solving the problem optimally is a
difficult task.

Using the problem generator of Thiebaux and Slaney [9], 100 random instances for
each size of problem between 5 and 11 were generated, giving 700 instances in total.
The results are shown in Figure 2(a) (Maxplan) and in Figure 2(b) (Blackbox). The
numbers of unsolved instances are shown in Table 1.
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Fig. 2. Combined blocksworld instances.

Problem Set meta- CSP Blackbox Maxplan
5 blocks 0 0 4
6 blocks 0 0 0
7 blocks 0 0 0
8 blocks 0 0 0
9 blocks 0 0 0
10 blocks 0 0 54
11 blocks 0 1 52
Total 0 1 110

Table 1. Numbers of failed instances in the blocksworld domain. There are 100 problems in each
problem set, making 700 in total.



4.2 Driverlog

Driverlog is a logistics style planning domain, first used in the 2002 International Plan-
ning Competition. A Driverlog problem contains four types of object: locations, trucks,
drivers and packages. Locations are connected by roads and paths. Drivers can walk
along paths, whilst trucks can drive along roads. However, trucks cannot drive down
paths, and drivers cannot walk in the road. Packages have to be transported in trucks,
and trucks need to be driven by a driver in order to move anywhere. The typical goal
in a Driverlog problem is to move a subset of all drivers, trucks and packages to some
locations.

The problem set for the Driverlog domain is generated by a custom generator. This
generator differs from the one used in the 2002 IPC in two major respects: it only
generates planar graphs for the underlying maps and there is no extra location situ-
ated between two locations joined by a path. These changes were made because planar
graphs more realistically model a road network and the extra locations vastly increase
the number of ground actions when walking actions are not often very important parts
of Driverlog plans. The instances generated are all single driver, single truck problems
with 15 locations. The parameter to be varied is the number of packages to be delivered.
Each package, the driver and the truck each have a goal location, not equal to its start lo-
cation. The number of packages is varied between 5 and 15, with 10 instances for each
size. The results are shown in Figure 3(a) (Maxplan) and in Figure 3(b) (Blackbox).
The numbers of unsolved instances are shown in Table 2.
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Fig. 3. Combined Driverlog instances.

4.3 Grid

The Grid problem has similarities with Driverlog, in that it is a transportation problem.
It does differ from it in some crucial ways. The layout of the problem is a grid, with
each location connected to adjacent locations up, down, left and right of it in the grid.
The cargo in the Grid problem are no longer passive objects whose only role in a plan



Problem Set meta- CSP Blackbox Maxplan
Driverlog 1 0 0 5
Driverlog 2 0 1 7
Driverlog 3 0 2 9
Driverlog 4 0 7 9
Driverlog 5 0 9 10
Driverlog 6 0 10 10
Driverlog 7 0 10 10
Driverlog 8 1 10 10
Driverlog 9 4 10 10
Driverlog 10 2 10 10
Driverlog 11 6 10 10
Driverlog 12 7 10 10
Driverlog 13 6 10 10
Driverlog 14 7 10 10
Driverlog 15 10 10 10
Total 43 119 140

Table 2. Numbers of failed instances in the Driverlog domain. The re are 10 problems in each
problem set, making 150 in total.

is to be moved between locations. The cargo in Grid is a number of keys, and to get
keys to their desired locations requires different locations to be unlocked. However, the
key that unlocks a location may not be the key that needs to be delivered to that same
location.

The Grid problem generator is supplied with the FF planning system [8]. The pa-
rameters of a Grid problem are x-dimension, y-dimension, number of keys (k#), num-
ber of locks (l#) and number of different types of key. Four different size grids will be
studied, 3 × 3, 3 × 4, 4 × 4, 4 × 5. In each of these sizes, there will be ten problems
generated for each of the following parameter sets: {(k#, l#) | k# ∈ {1, 2, 3, 4}, l# ∈
{1, 2, 3, 4}} giving 640 total instances. The results are shown in Figure 4(a) (Maxplan)
and in Figure 4(b) (Blackbox). The numbers of unsolved instances are shown in Table 3.

Problem Set meta- CSP Blackbox Maxplan
grid 3× 3 0 8 34
grid 3× 4 4 23 51
grid 4× 4 4 31 57
grid 4× 5 13 40 66
Total 21 102 208

Table 3. Numbers of failed instances in the Grid domain. There are 160 problems in each problem
set, making 640 in total.
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Fig. 4. Combined Grid instances.

5 Discussion

Comparing the meta- CSP solver and Maxplan is the best way to evaluate the per-
formance of the meta- CSP model. This is because the major difference between the
two planners is which model they use (meta- CSP or purely the SAT encoding). How-
ever, for the sake of completeness, it is important to compare the results with another
SAT planner. The comparison with Blackbox reveals some curious results, well wor-
thy of discussion. These can provide some explanations of when it is better to use a
forwards search direction and when to use a backwards search direction. When view-
ing the graphs, it is important to consider how many problems were unsolved by each
planner, as these points cannot be plotted.

5.1 Comparisons with Maxplan

The results were consistently better than those of Maxplan. In all three domains, the
meta- CSP solver solves more instances that Maxplan. As shown in Table 1, Table 2 and
Table 3, of the 1490 instances, the meta- CSP solver solved 1426 (95.7%) compared to
the 458 (30.7%) that Maxplan solved. The graphs clearly show that, except for a few
instances, the meta- CSP solver out- performs Maxplan. The graph for the Driverlog
instances (Figure 3(a)) is very sparse, and hence not as informative as the other graphs.
It does illustrate how few instances Maxplan was able to solve in this domain, however.

In the Driverlog domain, Maxplan failed to solve any instances with 5 or more
parcels. For the meta- CSP solver, the first time the solver fails to solve all of the in-
stances was when there were 15 parcels to deliver. To put this in context, problems
with 5 parcels are seeded by a plan length of approximately 30 steps, whereas problems
with 15 parcels the seed plans are approximately 70 steps. Also in the Blocksworld
instances, Maxplan had started to fail 50 percent of the time for number of blocks 10
and 11, where the meta- CSP solver solved every instance. In the Grid problems, both
planners suffered difficulties for the more difficult problems, although the meta- CSP
solver fared better, solving 619 of the 640 instances, compared to the 432 problems



that Maxplan solved. There are several of the harder instances in the Grid domain in
which Maxplan performs better than the meta- CSP solver. Any indication that these
points indicate that Maxplan is scaling better are unrealistic, however, considering the
numbers of instances that remain unsolved by Maxplan.

The strongest results were gained in the Driverlog domain. The meta- CSP approach
is suited to this domain because firstly, the goals are often achievable early in the plan
(especially as the numbers of parcels increases). This means that the maintenance of
the noops has an important impact on the planning process. Another reason the meta-
CSP has an advantage is the fact that the schedule is tight. This means that once a
final achiever is decided, propagation is more likely to lead to an outcome than if there
was a lot of slack in the problem. Because these problems had only one truck and one
achiever, the decision over resource allocation had already been decided, there was one
choice.

As such, the scheduling decisions of when to deliver the packages was the key
decision. This is demonstrated in the fact that the meta- CSP solver can solver larger,
and more, instances than can Maxplan. In the Grid domain, other decisions that have no
relation to the actual top- level goals are also important and so performance was closer.

5.2 Comparisons with Blackbox

As with Maxplan, Blackbox solved fewer instances than the meta- CSP solver. In total,
Blackbox solved 1268 of the 1490 problems. At 85.1%, that is still more than 10%
fewer instances solved than the meta- CSP solver. As the graphs illustrate, however,
Blackbox usually performs better for the majority of the solved instances. There are
several reasons that Blackbox performs better. There are overheads that searching in a
backwards direction brings with it:

– Before search, the sub- optimal planner that is used to seed the plan has to solve
the problem. Although this is typically trivial, it can be an overhead on the total
planning time, especially for simple problems, or problems that FF can perform
badly on.

– Creating the SAT model is often the dominant part of the meta- CSP search time.
Because FF can often overestimate the optimal length greatly, twinned with the
fact that in its current implementation, the meta- CSP solver is reliant on Blackbox
writing the model to disk (often creating CNF files > 100MB), then just generating
the model can take a long time.

It would be disingenuous to leave the discussion there, the difference in performance
cannot be entirely down to these overheads. There is a more interesting question of
when searching backwards is better than searching forwards. Looking at the individual
domains, it can easily be seen that it was in Driverlog that the meta- CSP performs best.
Blackbox solved no problems with more than 5 parcels to deliver, the meta- CSP solver
even solved some problems with as many as 14 parcels. On the other hand, Blackbox
certainly performs better on most Blocksworld instances. The Blocksworld results are
split up to show how the planners performed with different numbers of blocks. Notice
that although most of the instances that are difficult for Blackbox are of the longest
plans, there are some cases where the plans are not that long but still difficult.
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(a) 6 Blocks
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(b) 8 Blocks
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(c) 10 Blocks

Fig. 5. Blocksworld instances partitioned by size.

The results for 6, 8 and 10 blocks are shown in Figure 5 and they reveal some in-
triguing behaviour. The variance in the time it takes Blackbox to solve the instances
seems to increase with the numbers of blocks, whereas the meta- CSP time seems to
remain more stable. With 10 blocks, Blackbox still solves many instances quickly (< 1
second), but others can take several hundred seconds. It seems somewhat intuitive that
the meta- CSP solver might solve longer plans faster than Blackbox. This intuition
coming from the fact that the meta- CSP solver begins with an overestimate, so a plan
close to that estimate is better. The graph of the 11 block instances is plotted again in
Figure 6(a), this time annotated with the optimal plan lengths, which range from 5 to
18 steps. To explain this result, it is necessary to also look at a different measure, the
distance between the fist time the goals appear non- mutex in the planning- graph and
the optimal plan length. This is shown in Figure 6(b). Notice that it is exactly those in-
stances that are distant from the fixpoint, that the meta- CSP solver wins over Blackbox.
Only one instance that was in the 6, 7 range was solved faster by Blackbox than by the
meta- CSP solver. In the previous range (4, 5), the meta- CSP solver performs better
than Blackbox in 14 of 20 instances. There is a large cluster of results that Blackbox
solved in the range of 0.1 and 1 seconds that are all solvable either at, ar at the next
timepoint from, the time the goals first become reachable. So, it seems that problems
that are solvable close to the level that the goals first become pairwise non- mutex are
best solved by Blackbox, but the more distant problems are best solved by the meta-
CSP solver.

One reason this could be is that even when finding sub- optimal plans, the meta- CSP
solver is learning information about earlier layers through the learning mechanism of
the SAT solver. Blackbox does not remember information between layers, and therefore
will often consider the same incorrect choices at each subsequent layer. This result not
only provides a good argument for when the meta- CSP solver is better than Blackbox,
it suggests an explanation of when planning backwards in the planning- graph is more
effective than planning forwards. The best results obtained by the meta- CSP solver
were in the Driverlog domain. Driverlog is exactly the type of domain in which all of
the goals quickly become pairwise non- mutex, but where the actual optimal level is
quite distant from that point.
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Fig. 6. 11 block annotated Blocksworld instances. The x- axes are the meta- CSP timings, the y-
axes represent the Blackbox timings.

6 Related Work and Future Work

The idea of solving a problem using a Meta- CSP model was used in the BLUE-
BLOCKER system that optimally solves rectangle packing problems [10]. An interest-
ing feature of this solver is that it models the rectangle packing problem as a disjunctive
temporal network, and each assignment in the meta- CSP represents the partial ordering
of the rectangles to be packed. Only when a consistent partial ordering has been found,
does the system attempt to find a concrete solution, though there may not be a valid
solution even then.

Although competitive as a planner, there is clear space for development of the meta-
CSP solver. The meta- CSP solver currently has a variable ordering heuristic based on
the order of which the goals are achieved on the seed plan. Currently the meta- CSP
solver has no value ordering heuristic. Since the variables can have large domains (one
goal can have many achievers), an ordering heuristic on the values could provide a
performance increase. The meta- CSP model was motivated by the study of backdoors
in planning problems. An observation being that the key scheduling decision of when
to finally achieve a goal cannot be made explicitly in the SAT solver. The current solver
searches across actual achieving actions of the goals. This means that decisions are also
being made about how goals are achieved, and not just when they are achieved. So, the
decisions that the meta- CSP is making are of a very course granularity. It may be that
the key decisions regard mainly resource allocation, or scheduling, decisions. It has
also been noted that some key decisions are allocation decisions that are completely
unrelated to the goals (for instance, the keys in the Grid domain). The meta- CSP could
be altered such that variables represent this finer- grained structure, simply when a goal
is achieved, or which resources are used in its achievement.

Finally, a closer integration with planning technology could add power to the meta-
CSP. One direction the authors would like to pursue is a study into how landmarks
analysis [11] could improve search. Landmarks could be added as constraints in the



meta- CSP, and because the plan length is bounded, more landmarks could potentially
be found.

7 Conclusions

We have introduced a novel reformulation of the planning problem. This is based on a
constraint model that searches across the final achievers of the goals of the problem. We
have shown this model to be competitive when compared to other state of the art SAT
planners. It has been shown to solve more instances than both Maxplan and Blackbox
across three domains: Blocksworld, Driverlog and Grid. Time performance is almost al-
ways greater than Maxplan on the instances that Maxplan can solve. Often performance
is worse than that of Blackbox, but it appears that this has much to do with the distance
from the Graphplan fixpoint. Our analysis shows that the performance of Blackbox can
degrade when plans are distant from the first time the goals appear non- mutex in the
planning- graph. The results also demonstrate the fact that making the key scheduling
decision of when to achieve a goal can improve the efficiency of search over a flat SAT
model.
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