University of Huddersfield Repository

Bills, Paul J., Underwood, R.J., Cann, P., Hart, A, Jiang, Xiangqian and Blunt, Liam

What is required to measure the wear of explanted metal-on-metal hips?

Original Citation

This version is available at http://eprints.hud.ac.uk/11896/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?

P Bills¹, R J Underwood², P M Cann², A Hart³, X Jiang¹, L Blunt¹

¹Centre for Precision Technologies, University of Huddersfield, ²Tribology Group, Imperial College London, ³Department of Musculoskeletal Surgery, Imperial College London

WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?

Presented at
BORS Annual Meeting
Cardiff
12 – 13 July, 2010

Background

• Worldwide interest in failure of Metal-on-Metal (MoM) hips
• 150,000 large diameter MoM hips implanted in UK
• Failure rate of resurfacings is 7.6%, compared to 3% for cemented hips
• Three designs of MoM hips have been removed from the market in past 4 years
• NJR data suggests 43% of hip failures are unexplained
• Wear may be smaller than form errors
• Need to be able to separate wear and worn when analysing data

Measurement Requirements

• No British Standard to measure wear of explanted hip joints
• No validated measurement protocol in the literature
• Typical linear wear rates for explanted hips are:
 - Cup: 0 – 180 μm/year
 - Head: 0 – 750 μm/year
• Accuracy required ~ 1 μm

Wear and Form

• Hip joints are not perfectly spherical as manufactured – the deviations are referred to as “Form”
• The manufactured shape of the components is unknown
• Form errors can be up to 30 μm
• Wear may be smaller than form errors
• Need to be able to separate wear and worn when analysing data

Co-ordinate measuring machine (CMM)

The Zeiss PRISMO is a co-ordinate measuring machine.
• Hip located in a chuck, probe measures grid of points, scanning whole surface to determine extent of ‘unworn area’.
• Unworn area scanned to create a reverse engineered 3D CAD surface which represents the component ‘pre-wear’ surface.
• Whole surface scanned and deviation is mapped.
• The maximum linear wear and wear volume are then calculated directly.

Comparison of Talyrond & CMM

<table>
<thead>
<tr>
<th></th>
<th>CMM</th>
<th>Talyrond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>~£25 - 250k</td>
<td>~£10 - 80k</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.02 – 2 μm</td>
<td>1 – 10 μm</td>
</tr>
<tr>
<td>Total Uncertainty</td>
<td>Probing: 0.7 μm, Scanning: 1.3 μm, U3 = 4 μm</td>
<td>Relative: 30 μm, Absolute: 4 μm</td>
</tr>
<tr>
<td>No of data points</td>
<td>10,000</td>
<td>Up to 72,000 points per revolution</td>
</tr>
<tr>
<td>Time</td>
<td>15-30 minutes per component depending on point density</td>
<td>Up to 1.5 hrs per component for 3D map, 2D profile in <1 minute</td>
</tr>
<tr>
<td>Absolute or Relative Measurement</td>
<td>Traceable Calibration</td>
<td>Calibrated from traceable standard</td>
</tr>
</tbody>
</table>

Conclusion

• The CMM and Talyrond are both instruments suited to measuring wear of explanted hips.
• Development of robust measurement protocol and standard required including:
 - Comprehensive study of good practice.
 - Verifiable uncertainty statements.