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Abstract— This paper presents a novel approach to 

modelling and simulation of the dynamic behaviour of 

rail-wheel interface. The proposed dynamic wheel-rail 
contact model comprises wheel-rail geometry and 

efficient solutions for normal and tangential contact 

problems. This two-degree of freedom model takes into 

account the lateral displacement of the wheelset and the 

yaw angle. Single wheel tread rail contact was considered 

for all simulations and Kalker‟s linear theory and 

heuristic non-linear creep models were employed. The 

second order differential equations are reduced to first 

order and the forward velocity of the wheelset is 

increased until the wheelset becomes unstable. A 

comprehensive study of the wheelset lateral stability is 

performed and is relatively easy to use since no 

mathematical approach is required to estimate the critical 

velocity of the dynamic wheel-rail contact model.    
This novel approach to modelling and simulation of the 

dynamic behaviour of rail-wheel interface will be useful 

in the development of intelligent infrastructure diagnostic 

and condition monitoring systems. The automated 
detection of the state of the track will allow informed 

decision making on asset management actions – 

especially in maintenance and renewals activities. 
 
Keywords: modelling; simulation; condition monitoring; 

systems engineering; wheel-rail contact 

NOMENCLATURE 
R0  =   Nominal rolling radius of the wheel (460mm) 

Rl    =  left wheel rolling radius (mm)                       

Rr   =  Right wheel rolling radius (mm)                       

RraiL =  Rail radius (79.37 mm) 
a      = Half length of the semi-axes of c 

           in the rolling direction (mm) 

b     =  Half length of the semi-axis of contact 

           patch in the lateral direction (mm). 
Iz     =  Moment of Inertia of the wheelset (700x106kg-mm2) 

Kpy  =   Lateral suspension stiffness (3.86x103N/mm) 

Kpx  =   Longitudinal spring stiffness (850 N/mm) 

Cpy  =   Lateral damper coefficient (8 Ns/mm) 
Cpx  =   Longitudinal damper coefficient (100 Ns/mm) 

f11    =   Longitudinal linear creep coefficient (8.06x106 N) 

f22    =   Lateral linear creep coefficient (8.09 x 106N) 

f23    =   Lateral/spin linear creep coefficient (2.2 x 107 N-mm) 
f33    =   Spin linear creep coefficient (1.27x107 Nmm2) 

m     =  Mass of the wheelset (1250kg) 

W    =   Axle load (110,000N) 

vx     =   longitudinal creepage 
vy     =   lateral creepage 

vspin   =   Spin creepage 

l0     =   Half wheel axle length in central position (742.9mm)  

G      =  Shear Modulus of rigidity = 80x103MPA          
C11    =   Longitudinal creep coefficient  

C22    =   Lateral creep coefficient  

C23    =   Lateral/spin creep coefficient  

C33    =  Spin linear coefficient  
d       =  Half distance between the two springs (900mm) 

l0      =   Half wheelset axle distance (742.9mm) 

      =  Roll velocity 

 

I.  INTRODUCTION  

The lateral stability of the wheelset affects the dynamic 

motion of the railway vehicle. This phenomenon depends 

on the wheel-rail contact model, wheel-rail profile design, 

hunting, critical velocity and creep contact forces acting 

on the contact patch. Hertz theory was applied to solve 

wheel-rail contact problems [1]. Hertz model runs very 
fast in real time and is thus used in most railway vehicle 

dynamic simulations. However for rapidly changing 

contacts with time and with increased normal contact 

forces, Hertz model is not suitable since in these 

situations the contact region becomes conformal. Semi-

Hertzian method [2-3] was developed to cater for the 

variations and increase in the normal contact forces 

acting on the wheel-rail interface. It uses the geometric 

intersection of two solids in contact region to find out the 

shape of the contact patch. Kalker, [4] proposed the exact 

theory of the wheel-rail contact model by developing a 

robust algorithm called CONTACT. This model requires 

so much computation power since the contact patch is 

discretized into stripes before the tangential creep forces 

are calculated. Finite Element Method (FEM) [5] was 

used to model the dynamics of the wheel-rail interface. 

Due to the enormous computational time required to 
implement FEM methods, it rarely used for railway 

vehicle dynamic simulations.  

The tangential creep forces play a vital role in wheel-rail 

rolling theory. Carter solved the 2-Dimensional problem 

of wheel-rail contact rolling theory using a locomotive 

wheel and a cylindrical rail [6]. He maintained the fact 

that the tangential creep forces must not exceed the 

Coulombs maximum limit. Johnson and Vermeulen 

extended Carter‟s theory to 3-dimensional case to include 

the two smooth half rolling surfaces without spin. 

Carter‟s model considered only the relationship between 

the longitudinal creepage and the tangential forces on the 

contact patch region. Kalker [7] proposed the linear 

theory for determining the tangential forces acting on the 

contact patch. A new Heuristic non-linear model [8-9] 
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developed by Shen for limiting the tangential forces is 

discussed. Several dynamic models have been developed 

for wheel-rail interface using the wheel-rail profile 

geometry. A parametric 3-dimensional wheel-rail contact 
model was developed to model the dynamics of the 

wheel-rail contact model [10]. Wickens [11] studied the 

effect on hunting on a railway vehicle on a straight track. 

He observed that hunting motion occurs when the critical 

velocity of the wheelset exceeds the maximum required 

speed limit of the designed for its operation. Finally a 

new model was developed to study the dynamic 

interaction of the wheel-rail contact on a curved track 

[12]. This study showed that the lateral and longitudinal 

stiffness has significant effect on critical velocity of the 

railway vehicle.  

In this paper a two dimensional wheel-rail contact model 

is modeled. Hertz contact model is used to get the contact 

patch size dimensions and then the Heuristic nonlinear 

model is applied to limit the creep contact forces. The 

lateral stability of the wheelset is investigated by solving 

the system of non-linear equations of the model using 
Runge-Kutta‟s method. The lateral stability of the 

wheelset is then investigated by increasing the forward 

velocity of the wheelset until it becomes unstable. The 

proposed model contains; wheel-rail contact geometry, 

normal and tangential contact problems and equations for 

describing the dynamic equation (see Fig. 1). 

 

 

Fig. 1 Dynamic Wheel-rail Contact Model 

II. WHEEL-RAIL CONTACT GEOMETRY 

A new conical wheel profile with wheel tread taper 1:20 

is used to model the dynamic wheel-rail contact model. A 

BS 113A rail profile is also used for the model of the rail-

profile. The nominal rolling radius Ro of the wheelset is 

460mm while the rail radius Rrail in contact point range is 

79.37mm as shown in Fig. 2. This is the contact point 

range for the wheelset on the track.  

Assuming that the yaw angle of the wheelset is very 

small and can be neglected, the 2-Dmensional model of 

the wheel-rail contact geometry considering the vertical 

displacement uz and the lateral displacement uy is 

modeled (see Fig. 3). 

 

The railway track is considered to be rigid and there is no 

cant applied at both rails. When the wheelset is in central 

position, the angle made by the horizontal plane is wr for 

the right wheel and wl for the left wheel. Similarly, the 
co-ordinate of point A at central position with respect to 

the wheelset frame is (l0, -R0). When the wheelset is 

displaced laterally from its central position to the right (as 
shown in Fig. 3) the rail contact slope formed by the new 

wheel rail contact point B from A for right wheel profile 

is rr. It is a function of the roll angle  and the wheel 

contact slope wr. The rolling radius for the right and left 
wheel tread becomes Rr and Rl. The previous wheel-rail 

contact point on the wheel is now contact point C (see 

Fig. 3).  

The wheel-rail co-ordinates are defined (see Fig. 2) as 

follows 

wr = Right wheel co-ordinate (lateral direction) 

rr = Right rail co-ordinate (lateral direction) 

wr = Right wheel co-ordinate (vertical direction) 

rr = Right rail co-ordinate (vertical direction) 
uz = Vertical displacement 

uy = Lateral displacement 

The lateral distance between point A and C is 

0
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Fig. 3 Right wheel rail geometry 

 

The total lateral distance between point B and C is 

0)
rrc

Δ(sin
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  Y      (3) 

Also, the vertical distance between point B and C is 
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  Z     (4) 

where Zc and Yc are the vertical and lateral co-ordinates at 

point C. 

For small roll angles cos = 1, and sin = 0, Eq. 3 and 
Eqn. 4 simplifies to 

0
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The right rail contact slope rr (see Fig. 3) is  

 
wrrr

                    (7) 

Similarly the equations for the left hand wheel-rail 

contact geometry are 

0
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u
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R
y
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Fig. 2 Wheel-rail contact geometry 
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Assuming that the contact points are constrained between 

the region of -14.13mm < wr < 1.48mm and -1.48mm < 

wl < 14.13mm for the right and left wheel profile, then 
the wheel profile equations is  

005.0
wr


wr
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005.0
w


wll

                     (12) 

The BS 113A rail profile is made up of three main curves 

with rail radius of 79.37mm, 304.8mm, 79.37 mm (see 

Fig. 2). The equation of the curves for the region  

-14.13mm < rr < 1.48mm, right rail contact point region 

and -1.48mm < rl < 14.13mm, left rail contact point 
region can be defined as follows; 

2/1
)

2
)96.3

rr
(

2
37.79(27.79  

rr
                      (13) 

2/1
)

2
)96.3

r
(

2
37.79(27.79 

lrl
               (14) 

The wheel contact slope is defined as 
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Equations (5) to (18) can be solved synchronously taking 

uy as the input variable using Newton‟s method which is 

discussed next. 

A.  Numerical Solution (Newton Raphson Method) 

Several methods exist for solving non-linear multi-

dimensional equations. The two most common methods 

include the Newton Raphson‟s method and the Quasi-

Newton method. Newton Raphson method is a numerical 

method for solving simultaneous non-linear equations. It 

provides quadratic convergence of the solutions provided 
the initial conditions are close to the actual solution [15]. 

The algorithm for implementing this method is 

)
k

x(fJ
k

x
k

x 1
1




                (19) 
where 

J
-1

 = Inverse Jacobian matrix of f(xk) 

xk = initial guess used as the starting point for iterations 

xk+1 = the new guess 

The Newton Raphson algorithm terminates only when the 

function f(x) is close to zero. The value of x at that point 

is obtained as the solution to the equation. For application 

to solving the wheel-rail contact geometry equations, 

Newton Raphson‟s method is less efficient since for 

every lateral displacement input uy, the initial conditions 

must be guessed to ensure quick convergence to the 

solution. A better method for solving these equations is 

the Quasi-Newton method [15]. 

 

B. Quasi Newton Method 

The Quasi-Newton method is an optimization technique 

that can be used to solve a system of non-linear 

differential equations. In Newton-Raphson‟s method, the 

Jacobian matrix had to be computed in every iteration but 
with the Quasi-Newton method, a single Jacobian matrix 

is determined and thus used for iteration. In Matlab, the 

function fsolve is used to solve a set of simulations non-

linear equations using Quasi-Newton‟s theory of the form 

 

f(x) = 0;                (20) 

  

The algorithms implemented in fsolve function are 

Gauss-Newton method, Levenberg-Marquardt method 

and the Trust-Region-Reflective method [14] 

The syntax used for implementation in Matlab is [14]; 

 x = fsolve (function, x0, options)                 (21) 

where 

x = solution of the equation in vector form 

function = function file containing the set of non-linear 

simultaneous equations 

x0 = the initial condition of x 
options = optimization options used for simulations.  

Writing the wheel-rail geometry equations into a function 

file and solving using initial conditions x0 equal to zeros 

all through, the wheel-rail co-ordinates converged easily 

to the solution.  

For the dynamic wheel-rail contact model, the two most 

important parameters that are required are the contact 

angle and the rolling radius difference of the curve. 

The contact angle for the left and right wheel-rail 

geometry defined in Eqn. (7) and (10) would be used for 

the dynamic model simulation. The rail contact angle plot 

for the left/right wheel contact is shown below 

 
 

 

 
 

 

Identify applicable sponsor/s here. (sponsors) 

Fig. 5 Contact angle (left and right wheel-rail contact) 

 

Fig. 6 Rolling radius difference (left and right wheel rail  
contact) 
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Fig. 6 shows the Rolling radius difference of the wheelset 

derived from the left and right vertical wheel co-ordinates 

wr and wl as follows 

wr
R

r
R 

0
                  (22) 

wl
R

l
R 

0
                               (23) 

The flangeway clearance for this model is 13mm. Single 

wheel-rail contact simulations is considered in the wheel 

tread region for the left and right wheel. 

III THE NORMAL CONTACT PROBLEM 

For an applied load on a wheel-rail interface, Normal 
contact forces develop on the contact patch depending on 
the total vertical force applied and the contact angle of the 
wheel-rail contact formed as a result of the lateral 
displacement y of the wheelset during motion (see Fig. 7). 

 

 

The normal contact forces acting on the left and right 

wheel in static equilibrium is Qr and Ql given as

l
Q)

l
wcos(

l
N       (24)

r
Q)

wr
cos(

r
N        (25) 

The lateral forces Fyr and Fyl can be resolved as follows 

assuming small roll angles 

yr
F)

l
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l
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r
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The total lateral force acting on the contact patch is 

)
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r
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l

Q
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For small contact angles 

W
yl

F
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FGr                             (29) 

Gr is the gravitational force. The Gravitational force 

restores the wheelset back to its central position when it is 

displaced in the lateral direction.  

A. Hertz Contact Model 

Hertz contact theory predicts the size of the contact patch 

using the following formulae; 

32

2
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where m and n are the Hertz elliptical constants [2],  N is 

the normal force(left and right wheel-rail) acting on the 

contact patch and A and B are the relative curvatures given 
as  

rail
R

1
B         ,

R

1
A                  (31) 

 
 

 

 

R is the Nominal rolling radius at left and right wheel in 

the central position or the rolling radii of the left and right 
wheel as a result of lateral displacement. Rrail is the radius 

of the rail. In Fig. 8, the Elliptical contact patch for the 

wheel-rail contact model is shown with values a = 

7.0045mm and b = 2.20245mm. Poisson‟s ratio (u = 0.3) 

and Young Modulus (E = 210000MPA).  

    
IV TANGENTIAL CONTACT PROBLEM 
The tangential contact problem resolves the tangential 

creep forces acting on the contact patch. A deviation from 

pure rolling motion of the wheelset is caused by 

acceleration, traction, braking and the presence of lateral 

forces acting on the wheel-rail interface. Creepages are 

thus formed as a result and can be represented as 
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where v is velocity and v2x, v2y, 2 are the real velocities 

while v1x, v1y, 1 are the pure rolling velocities of the 
wheels in the absence of creep. The longitudinal creepages 

at (right and left) wheel-rail contact 
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The lateral creepages at the right and left wheel-rail 

contact 

φ1v)0/Rrψ)(Ry-1(v
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The spin creepages at the right and left wheel-rail contact 

is 

)
0
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)
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Fig. 8 Elliptical Contact Patch for 0mm lateral 

displacement (Left/Right wheel-rail contact) 

 

Fig. 7 Vertical and Normal Contact forces acting 

on              
     the wheel-rail contact   
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A. Kalker’s Linear Theory 
Kalker established a linear relationship between the 

developed creepages at the contact patch and the creep 

forces [7]. The maximum creep forces as determined by 
Kalker are as follows 

Longitudinal creep force 
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where 
33232211

f,f,f,f  are the linear creep coefficients 

given computed as 

1111
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33
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33232211
C,C,C,C  are the creep coefficients tabulated by 

Kalker [6] and G is the Shear modulus of rigidity of steel. 

 

B Heuristic Non-linear Model 
The Heuristic non-linear creep model was developed by 

Shen and White [8] to cater for the non-linearities in the 

wheel-rail geometry, adhesion limits on the creep force-

creepage relationship and the spin creepage effect. The 

creep forces developed by Kalker‟s linear theory are 

limited for high creepages by a saturation constant „a‟ 

developed as follows; 
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 = unlimited normalized creep ratio 
The reduced creep forces now become 
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V WHEELSET DYNAMIC BEHAVIOUR 
The dynamic behaviour of the wheelset is studied by 

summing the total forces acting on the wheelset and then 

applying Newton‟s law. In this paper the suspended 

wheelset is used which includes the primary suspensions 

in the longitudinal and lateral direction. The top view of 

the suspended wheelset is shown below where x is the 

rolling direction and y is the lateral direction. 

The suspension forces in the lateral direction and 
longitudinal direction can be resolved as follows (see Fig. 

9) 
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The equations of motion of the can be derived by 

combining Eqns. (40 – 45, 55-56) to arrive at the Kalker 

linear model. For the Heuristic nonlinear model, Eqns. 

(52-54) is used to replace the maximum creep forces 

computed in Eqns. (40 – 45). Neglecting the effect of the 

gyroscopic wheel moment, the two degree of freedom 

equations of motion comprising of the lateral 

displacement y, and the yaw angle  are defined as 
follows 
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The yaw rotation equation of motion is 
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A.  Equations of Motion 
The equations of motion of the suspended wheelset Eqn. 

(50)-(51) is can reduced to a system of first order 

differential equations; 

  x(t)f  (t)x                  (59) 

where x(t) is a 4 x 1 state vector variable. 

 

VI SIMULATED RESULTS 
The ODE45 function in MATLAB implements Runge 

Kutta 4
th

 order method with variable time step for 

computational efficiency [14]. It solves initial value 

problems of the form 

x)f(t,  (t)x  ,   x(t0) = x0            (60) 

where x is a state vector of the dependent variables and t 

is the independent variable [14].  

Applying Ode45 function to solving the equations of 
motion, the syntax used is 

Fig. 9 Top view (Suspended Wheelset diagram) 

 

x 

y 
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[t,x] = ode45 (@fun, tspan, initialconditions) 

Where fun = function file contain the reduced first order 

differential equations of motion for the system 
tspan = time span for simulation (30 seconds) 

initialconditions = initials conditions required for 

simulation of the dynamic wheel-rail contact model. 

The state variables used for simulation is 

x(1) = Lateral displacement (Initial condition = 5mm) 

x(2) = Yaw angle (Initial condition = 0) 

x(3) = Lateral velocity (Initial condition = 0) 

x(4) = Yaw velocity (Initial condition = 0) 

 

Further details on the use of Ode45 function can be found 

in [14]. Fig. 10 and Fig.11 shows Kalker linear Model 

and the Heuristic Non-linear Model results for various 

forward velocity inputs. Increasing the forward velocity 

of the wheelset from 5m/s (5000mm/s) to 40m/s leads to 

increasing amplitude peaks until the critical velocity is 

reached. For Kalker‟s linear model, the critical velocity 

just before flange contact is 40m/s while for the Heuristic 
Non-linear model, the critical velocity just before wheel 

flange contact is 35m/s. It can be readily noted that the 

critical hunting speeds of the linear model is generally 

slightly higher than the critical speed for the Heuristic 

non-linear model. Therefore increase in the forward 

speed of the wheelset leads to lateral instability and 

hunting. In most real situations the gravitational forces 

act as a restoring force to limit these increasing lateral 

oscillations. 

 
Fig. 10 Lateral displacement of the wheelset for initial velocity 10, 

30, 40m/s (Kalker’s linear Model) 

 
Fig. 11 Lateral displacement of the Wheelset for initial velocity 10, 

30, 40m/s (Heuristic Non-linear Model) 

VII   CONCLUSIONS 

In this paper, a new dynamic wheel-rail contact model 

was developed to study the lateral stability of the 

wheelset on the track. The equation of motion of a two 

degree of freedom single suspended wheelset model was 
derived completely. It was found that as the forward 

velocity of the wheelset increases, the wheelset becomes 

unstable on the track due to increasing lateral oscillations. 

These oscillations are limited by flange contact. This 

novel approach to modelling and simulation of the 

dynamic behaviour of rail-wheel interface will be useful 

in the development of intelligent infrastructure diagnostic 

and condition monitoring systems. 
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