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Abstract: Reciprocating compressors play a major part in 

many industrial systems and faults occurring in them can 

degrade performance, consume additional energy, cause 

severe damage to the machine and possibly even system 

shut-down. Traditional vibration monitoring techniques 

have found it difficult to determine a set of effective 

diagnostic features due to the high complexity of the 

vibration signals because of the many different impact 

sources and wide range of practical operating conditions. 

This paper focuses on the development of an advanced 

signal classifier for a reciprocating compressor using 

vibration signals. Artificial Neural Networks (ANN) and 

Support Vector Machines (SVM) have been applied, 

trained and tested for feature extraction and fault 

classification.  

The accuracy of both techniques is compared to 

determine the optimum fault classifier. The results show 

that the model behaves well, and classification rate 

accuracy is up to 100% for both binary classes (a single 

fault present in the compressor) and multi-classes (three 

faults present). 

Keywords: Fault Diagnosis, Reciprocating Compressor, 

Artificial Neural Networks, Support Vector Machine. 

I. INTRODUCTION 

The use of reciprocating compressors in industry has 

been widely reported, as has the urgent need for 

effective condition monitoring, which can accurately 

detect and diagnose the condition of the compressor 

see, for example [1].  

The vibration signal from a reciprocating 

compressor contains non-linear characteristics (e.g. due 

to the impacts resulting from the movement of the 

suction and discharge valves), and features extracted 

from the time, frequency and envelope domains of 

these signals can be used to reliably assess the health of 

the system. Unfortunately, not all the extracted features 

are equally useful in trouble-shooting, and experience 

has shown that even the most useful features are 

seldom used in the most effective way. In particular the 

interactions between and among features are not fully 

considered or even ignored [1] which may undermine 

the accuracy of diagnosis when the features employed 

are synergetic.  

In this paper Support Vector Machines (SVMs) have 

been applied to a real compressor with single and 
multiple faults. It has been claimed that SVMs have 

four important advantages over the more traditional 

ANN.  First and most important, is that SVM training 

uses the powerful mathematical technique of global 

optimized solutions and so has largely eliminated a 

major irritant of ANNs: convergence to local maxima 

and minima [2]. Second the simple geometric 

interpretation available for SVMs has proved very 

useful in extending its application to new areas and 

theoretically can give a sparse solution – that is the 

solution for the lowest number of entries [3]. Third, 

during training, the SVM uses structural risk 

minimization which permits the software designer to 

allow for sparseness of data and which can lead to a 

better performance for SVMs than ANNs [4]. Fourthly, 

it has become clear that SVM is relatively very 

efficient when dealing with large classification 

problems (very large feature spaces), because the 

process of linearization means that the number of 

dimensions is less important with SVMs than with 

conventional classifiers [5]. This has the important 

benefit that the number of features that can be 

considered for fault diagnosis may be larger than could 

be used for ANNs. 

However, it has also been pointed out that SVMs 

have a number of less satisfactory features: limited 

speed both in training and testing, extensive memory 

requirements, the solutions while geometrically simple 

can be algebraically complex, and the design of SVMs 

is not yet anywhere near optimal [6]. 

The SVM is a binary classifier it compares only two 

things at a time [7]. This means that if there are N 

items to be compared there will N*(N-1)/2 

comparisons. Thus, in a real situation there will usually 

be will huge number of comparisons to be made. This 

is made worse by the parallel necessity to miss nothing 

of consequence when taking measurements and to 

ensure all possible useful features are recorded. But not 

all features are equally informative about the condition 

of the machine, and to increase the speed and accuracy 

of the classifier feature selection and extraction should 

be limited to those features useful for classification [4-

5].  

Comparative studies of SVMs and ANNs in fault 

detection with simple two-class problems (healthy or 

defective) found that the SVM out-performed the ANN 

alone in classification accuracy, while performance 
of the SVM and performance of the ANN combined 

with a Genetic Algorithm were not significantly 
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different. However, it was claimed the training time for 

the SVM was substantially less than required by the 

ANN, and that the SVM was 100% successful [8]. 

II. VIBRATION DATA AND FEATURES 

A. Datasets 

Vibration datasets were collected from accelerometers 

attached near the inlet and outlet valves on the first and 

second stage cylinder heads of a two-stage, single-

acting Broom Wade TS9 reciprocating compressor. 

The test rig is shown in Figure 1. The compressor 

delivers compressed air at between 0.55 MPa and 0.8 

MPa to a horizontal air receiver tank with a maximum 

working pressure of about 1.38 MPa. The driving 

motor was a three phase, squirrel cage, air cooled, type 

KX-C184, 2.5 kW induction motor. It was mounted on 

the top of the receiver tank and transfers its power to 

the compressor through a pulley belt system. The 

transmission ratio was 3.2:1, so the crank shaft speed 

was 440 rpm when the motor ran at its rated speed of 

1420 rpm. The air in the first cylinder was compressed, 

passed to the higher pressure cylinder via an air cooled 

intercooler. When the air pressure in the storage tank 

reached a prescribed value, a diaphragm pressure 

switch switched off the electrical current to the motor. 

The cylinder pressures, temperatures and rotational 

speed were measured simultaneously with the vibration 

for comparison. The measured data was then fed, via a  

Figure 1 Test rig system 

data acquisition system to a computer for further signal 

conditioning and storage.  

Three common faults (loose drive belt, a leaky valve in 

the high pressure cylinder and a leak in the intercooler) 

were seeded separately into the reciprocating 

compressor. The performance of the compressor was 

monitored with only one fault present at a time. Four 

sets of experiments were conducted one for normal 

operation and one for defective operation with each 

fault. The signal from each channel consisted of 30642 

samples at a frequency of 62.5 kHz, total sampling 

time 0.49 seconds which is more than three working 

cycles of the compressor. Each data set was divided 

into 12 segments (bins) of 1024 samples. 

B. Detection Features 

The aim was to use signal processing to extract 

statistical features from the time, frequency and time-

frequency domains which are useful for the detection 

and diagnosis of the seeded faults.  

C. Waveform Features from Time Domain 

The features extracted from the vibration signal 

obtained from the accelerometer on the high pressure 

cylinder were: root mean square (RMS), peak factor, 

variance, skewness, kurtosis, range, histogram lower 

bound (HLB), histogram upper bound (HUB) and 

entropy. The first five of these are well known so only 

the last three are defined here: 
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Where    
    

      
   

  and        
     since N is the 

number of samples. 

D.  Waveform Features from Frequency Domain  

The Fast Fourier Transform (FFT) was used to 

transform the time-domain signal into the frequency 

domain from which the spectral features were obtained. 

The vibration spectra in Figure 2, show a number of 

discrete components  mainly from the compressor 

working frequency, 7.6Hz, and its harmonics, up to 

120 orders. The amplitudes vary slightly but 

significantly between the different faults, but it was 

difficult to find a simple set of features to separate the 

cases completely. Thus the amplitudes of these 

components were taken as a candidate feature, and 

different harmonics were used for each trial run. Thus, 

the resultant was a matrix of spectral features, with n 

harmonics and s the number of samples. 

 

 

 

 

 

 

 

Figure 2 Spectra of compressor vibration for healthy case and three seeded 

faults 
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III. Probabilistic Neural Network 

The PNN is a type of supervised neural network 

introduced by Specht in 1989 and used mainly for 

classification based on of Bayes optimal decision rule 

[9]:  

 

                              (4)  

where       and       are the probability density 

functions for data classes   and  ;    and    are the prior 

probabilities;    and    are misclassification data 

classes. Thus a vector   is classified into class i if the 

product of all the three terms is greater for data class i 

than for any other data class j not equal to i. In most 

applications, the prior probabilities and costs of 

misclassifications are treated as being equal as far as 

the density functions are concerned. In implementing 

neural network architecture, a PNN consists of an input 

layer, a pattern layer, a summation layer and a 

competitive output layer. This architecture is 

illustrated in Figure 3.  

Figure 3. Architecture of a PNN classifier 

In recent years, PNN has been widely used in different 

fields such as pattern recognition and signal processing 

and has been recognized as a useful technique for high 

dimensional classification problems. In addition it also 

is used in CM for differentiating different faults and 

degrees of fault severity [10]. 

The PNN is considered much faster than other 

algorithms such as a Multi-Layer Perceptron (MLP) 

neural network used in [11] during the training process, 

which is simply to select a kernel function and its 

smoothing parameter when solving a linear equation 

set.  

A. Pattern Layer 

For each training cycle there is one pattern node. For 

classification the pattern node produces a product of 

the input pattern vector x with a weight vector wi such 

that        , (where both   and    are normalized) 

and performs a non-linear operation on    before 

outputting its activation level to the summation node. 

The non-linear operation is                . 

B. Summation Layer 

The summation layer receives the outputs from the 

pattern layer related to a given class. It sums the inputs 

from the pattern layer that matched that class from 

which the training pattern was selected. 

 

                                (5) 

 

C. Output Layer  

The output nodes have two input neurons. These units 

produce binary outputs, associated with two different 

categories                          using the 

classification principle: 

 

            (                         

(             (6) 

The outputs have only a single weight  , given by the 

loss parameters, the prior probabilities and the number 

of training patterns in each category. Accordingly, the 

weight is the ratio of a priori probabilities, divided by 

the ratio of samples, and multiplied by the ratio of 

losses. These were developed using non-parametric 

techniques for estimating multivariate or univariate 

probability density functions from random samples. 

The  th 
pattern neuron in the  th

 group computes its 

output using a Gaussian Kernel of the form: 
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Where      is the centre of the kernel, and   is a spread 

parameter which determines the size of the kernel. The 

summation layer of the network computes the 

approximation of the conditional class probability 

function through a combination of the previously 

computed densities as follows: 

          
  
                                          (8) 

Where    is the number of pattern neurons of class k, 

and     are positive coefficients satisfying, 

       
  
      pattern vector   belongs to the 

class that corresponds to the summation unit with 

maximum output. 
IV. SUPPORT VECTOR MACHINES 

In describing the SVM emphasis is on the engineering 

and physics. If required, details of the mathematical 

methods can be found in, e.g.[5, 12-13]. 

Consider Figure 4, showing only two kinds of training 

samples:  and ■. Where  represents healthy and ■ 

represents faulty. H is the classifier hyperplane 

dividing the two groups of samples; x1 and x2, are the 

data points closest to H; H1 and H2 are parallel to H 

and pass through x1 and x2 respectively. Consider a 

planar classification task where, optimally, the set of 

vectors should be separated by the hyperplane without 

error. The distance separating the closest points of the 

two classes (distance between H1 and H2) is defined as 

the margin [14]. The task is to maximize the margin 
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(minimise the error bound) to give best performance. 

Note that this problem is linear. 

 

Figure 4 Classification of binary classes using SVM  

 
In standard form the separating hyperplane must satisfy 

the following constraints: 

yi (w·xi + b) ≥1  i =1, 2, ..., n              (9) 

Where: xi is the set of training samples, w·xi is the dot 

product, n is the number of samples, b is a scalar 

measure of the distance of H2 from the origin, and w is 

the normal vector to the hyperplane. Here the samples 

are assumed be in only one of two classes: healthy or 

faulty. For the healthy class yi = +1, and faulty class, yi 

= -1. 

However, in most real situations such an ideal 

hyperplane does not exist. To find the optimum 

solution the standard technique is to relax the 

constraints on (9) by introducing a slack variable, ξi ( ≥ 

0). This slack variable is said to represent the noise in 

the system. The solution to this problem requires the 

application of advanced but relatively well-known 

mathematical techniques. The calculation is 
converted into the equivalent Lagrangian dual problem 

and the learning task is reduced to minimizing the 

primal Lagrangian with respect to w and b: 

L(w, b, α) =  

 ½||w||
2 

+    
 
    –                   

                 

(10) 

Where  i are Lagrangian multipliers.  

Finding the optimal values for  i allows w to be 

expressed in terms of  i which allows the solution of 

(10) to be found. The optimal values for  i give the 

decision function: 

f(x) = sgn(∑ iyi (  ·   + b)                        (11) 

This paper refers to a linear problem in which the 

training samples,  and ■, were separable both in the 

original input space and in the feature space 

(hyperspace). However, with multiple dimensions, the 

features in the original input space will not normally be 

separable. Nevertheless a suitable choice of a so-called 

kernel function to be used in the decision function will 

separate the features in hyperspace.  

f(x) = sgn(∑ iyi (    )·      + b)           (12) 

 
The importance of this is that the analysis performed in 

hyperspace becomes linear. The kernel function is 

written K(xi·xj) = φ(xi)φ(xj). There are now standard 

kernel functions and this paper uses the very 

popular polynomial function [15]:  

K(xi·xj) = [(xi·xj) + 1]
p
.             (13) 

V. IMPLEMENTATION 

In this work, the experiments were performed using 

data from the reciprocating compressor test rig, 

described above, and computer implementation was 

conducted in MATLAB. 

Figure 5 shows a block flow diagram of a multi-class 

SVM based fault diagnosis system which consists of 

three sections: data acquisition, feature extraction and 

selection, and training and testing for fault diagnosis.  
Compressor sensors-Data 

Acquisition

Features 

Extraction

Training Data Set Testing Data Set

Kernel TransformKernel Transform

Optimal Hyperplane

Decision

Classification 

Result
 

Figure 5 Flow chart of SVM based monitoring 

Baseline features were extracted to form a healthy 

vector feature and faulty conditions created as a vector. 

A target vector was created the same length as the data 

vectors. Both data vectors and target vector were 

divided into two subsets of equal size by taking every 

other vector value, of which one was for training the 

SVM and the other for testing. In this particular work a 

feature selection technique ranks the extracted features 

and the most important are used as input features. 

Finally, the SVMs are trained and used to classify the 

machinery faults. 

For comparison, four sets of SVMs have been studied 

to evaluate the effectiveness of different types of 

features to calculate the classification rate. The first 
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two are for the time-domain feature based SVM, the 

other two is for the frequency-domain feature based 

SVM. 

VI. RESULTS AND DISCUSSION 

Table 1 presents classification results obtained for the 

SVMs using features extracted from the frequency-

domain. There were a total of 120 peaks in the 

frequency spectrum and each one was a possible 

feature. In each table there is a column headed “number 

of features”, the 15 or 20 or other number of features 

are those which gave the best result. The table includes 

performance of SVM classifier with a binary class 

using features from the frequency-domain, and 

performance of the SVM classifier with multiple 

classes  using features from the frequency-domain. 

Number of input 

features from the 

frequency domain 

Classification 

success rate %  

binary class, 

Classification 

success rate %  

multiple class 

15 92.36 83.33 

20 85.42 72.92 

30 93.75 72.92 

45 93.75 82.64 

50 94.44 84.03 

60 88.33 73.61 

75 89.56 79.86 

85 84.72 74.31 

100 85.45 74.31 

120 86.80 71.53 

Table 1 Performance of SVM classifier: features from the frequency-

domain, single and multiple classes 

Table 2 presents results obtained for previously in 

exactly corresponding situations using a PNN. A 

comparison shows the PNN is more successful when 

smaller numbers of features are used, but less 

successful with larger numbers of features. 

Interestingly, overall the PNN was more successful 

than the SVM both at detecting the presence of a single 

fault (leaky valve) 98.61% compared to 94.44%, and 

detecting the presence of the three faults, 95.83% 

compared to 84.03% . 

Number of input 

features from the 

frequency domain 

Classification 

success rate %  

binary class, 

Classification success 

rate %  

multiple class 

10 84.72 81.94 

15 84.72 81.94 

20 91.67 87.70 

30 95.83 93.75 

45 95.83 93.75 

50 97.92 95.14 

60 98.61 95.14 

65 98.61 95.83 

75 88.89 84.03 

80 81.25 77.78 

85 79.17 72.92 

100 71.53 61.81 

120 68.75 51.39 
 

Table 2 Performance of PNN classifier: features from the frequency-

domain, binary and multiple classes 

Table 3 present classification results for binary 

class fault detection obtained with the SVMs using 

features extracted from the time-domain. As explained 

and listed above, nine features were extracted and these 

were used in different combinations to detect the 

presence of a single fault (binary classifier) or three 

faults (multiple classifier). To avoid the need for an 

extra column in the tables it is stated here that the 

number of ways of selecting n features (1 ≤ n ≤ 9) from 

nine is 
9
Cn, e.g. there are 126 ways of selecting five 

features from nine, 126 possible combinations of five 

features. For example, in the second row of Table 3, 

features are selected two at a time from the total of nine 

possible features, there are 36 possible ways of doing 

this. Of the 36 possible combinations only two (Peak 

factor and Kurtosis, and Peak factor and Skewness) 

give the highest classification rate (75%). It can be seen 

that the SVM was 100% successful in detecting the 

presence of a single fault when 4, 5, 6 and 7 features 

were used, but was only 100% successful in detecting 

the presence of three faults when 5 and 6 features were 

used. 

Number of 

features used 

in classification 

Number of 

combinations of 

features giving highest 

classification rate 

Highest 

classification 

success rate % 

 

1 1 50.00 

2 2 75.00 

3 3 95.83 

4 3 100 

5 19 100 

6 16 100 

7 6 100 

8 2 100 

9 1 91.67 

Table 3 Performance of SVM classifier; binary class fault detection 

using time-domain features 

 

Number of 

features used in 

classification 

Number of 

combinations of 

features giving 

highest 

classification rate 

Highest 

classification 

success rate % 

 

1 1 45.83 

2 1 89.56 

3 2 93.75 

4 3 97.92 

5 7 100 

6 1 100 

7 1 97.92 

8 3 95.83 

9 1 91.67 
 

Table 4 Performance of SVM classifier; multiple class fault detection 

using time-domain features 

 

Tables 5 and 6 show the corresponding information for 

the PNN classifier. 
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Number of 

features used 

in classification 

Number of 

combinations of 

features giving highest 

classification rate 

Highest 

classification 

success rate % 

 

2 7 100 

3 15 100 

4 35 100 

5 35 100 

6 21 100 

7 7 100 

8 1 100 

9 1 100 

Table 5 Performance of PNN classifier; binary class fault detection 

using time-domain features 

Number of 

features used 

in classification 

Number of 

combinations of 

features giving highest 

classification rate 

Highest 

classification 

success rate % 

 

1 1 65.28 

2 1 80.56 

3 1 93.06 

4 3 91.67 

5 2 91.67 

6 1 91.67 

7 3 88.89 

8 1 88.89 

9 1 83.33 

Table 6 Performance of PNN classifier; multiple class fault detection 

using time-domain features 

The PNN classifier is generally more successful than 

the SVM when only one fault is present. However, the 

situation is reversed when diagnosing multiple faults 

when the SVM performed consistently better than the 

PNN. 

VII. CONCLUSIONS 

The PNN clearly performed better than the SVM when 

diagnosing both the single fault and the three (multiple) 

faults using features extracted from the frequency-

domain.  

The performance of the SVM improved considerably 

when using features extracted from the time-domain. It 

did not outperform the PNN in the diagnosis of a single 

fault (binary class) but did much better than the PNN in 

the diagnosis of three faults, achieving 100% when 

either five or six features were used.  

It should be noted that use of features extracted from 

the time-domain rather than frequency-domain 

consistently gave a higher success rate. 
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