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Abstract 

XML has become the standard way for representing and transforming data over the World 

Wide Web. The problem with XML documents is that they have a very high ratio of redundancy, 

which makes these documents demanding large storage capacity and high network band-width 

for transmission. Because of their extensive use, XML documents could be retrieved according to 

vague queries by naive users with poor background in writing XPath query. The aim of this 

thesis is to present the design of a system named “XML Compressing and Vague Querying 

(XCVQ)” which has the ability of compressing the XML document and retrieving the required 

information from the compressed version with less decompression required according to vague 

queries. 

XCVQ first compressed the XML document by separating its data into containers and then 

compress these containers using the GZip compressor. The compressed file could be retrieved if 

a vague query is submitted without the need to decompress the whole file. For the purpose of 

processing the vague queries, XCVQ decomposes the query according to the relevant documents 

and then a second decomposition stage is made according to the relevant containers. Only the 

required information is decompressed and submitted to the user.  

To the best of our knowledge, XCVQ is the first XML compressor that has the ability to 

process vague queries. The average compression ratio of the designed compressor is around 

78% which may be considered competitive compared to other queriable XML compressors. 

Based on several experiments, the query processor part had the ability to answer different kinds 

of vague queries ranging from simple exact match queries to complex ones that require 

retrieving information from several compressed XML documents. 
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CHAPTER 1 Introduction 

1.1 Introduction 

The eXtensible Markup Language (XML) is a World Wide Web Consortium 

(W3C) recommendation which has widely been used in both commerce and 

research. In recent years, we have witnessed a dramatic increase in the volume 

of XML digital information that is either created directly as an XML document 

or converted from another type of data representation. The importance of XML 

is mainly due to its ability to represent different data types within one document, 

solving the problem of long-term accessibility, and providing a solution to the 

problem of interoperability (Al-Hamadani et al., 2009). 

Due to the replication of the XML schema in each record, the XML document 

is considered to be one of the self-describing data files, which means that these 

kinds of files have a lot of data redundancy in relation to both its tags and 

attributes (Ray, 2001). For the above reason the need to compress XML 

documents is becoming increasingly dramatic. Furthermore, what has evolved is 

the urgent need to retrieve information directly from the compressed documents 

and then decompress only the retrieved information (Ferragina et al., 2006). 

Because of the wide range of XML documents in use and the different kinds 

of users, being able to deal with all kinds of queries has become a key issue. 

Some of these queries may have imprecise constraints which cannot be 

processed directly due to the grammar restriction in the existing query 

languages. However, these types of queries, which are known as vague queries, 

appear to be common when the users of the XML documents have little 

knowledge about the document structure, or may lack the skills to write a precise 

and meaningful query. Another type of vague queries occurs when the query is 

presented without the presence of a Schema or the data type definition (DTD) of 

the document. 

According to the relevant literature, there are a number of techniques that 

compress the XML documents and query the compressed version with no or 
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partial decompression. These techniques process almost all types of queries but 

not the vague queries; admittedly, there are a number of researchers now trying 

to process vague queries on the original XML document.  

The research carried out in this thesis primarily concerns designing and 

implementing a new technique called XML Compressing and Vague Querying 

(XCVQ) which consists of two stages. In the first stage, it separates the data part 

of the XML document into several containers according to the path of that data 

within the document. Then each of the containers is compressed separately using 

a back-end compressor. The second stage processes the vague queries by 

decomposing them into multiple sub-queries, retrieves information from the 

compressed XML document according to each sub-query, combines the 

retrieved information according to the given query, and finally decompresses 

only the most relevant information. 

To eliminate the amount of technologies associated with the XML documents 

and to make the process of compressing and retrieving information easier for the 

inexperienced users, XCVQ is designed to be schema independent in both phases 

of the compressor and the query processor. 

1.2 Research Hypothesis and Research Methodology 

This thesis is based on the following hypotheses: 

1. The existing XML compression techniques can be improved to construct 

a new schema independent XML compressor with a higher compression 

ratio. 

2. The redundancy in the XML documents significantly affects the size of 

those documents and can be reduced to more than half of the original file 

size. 

3. The compressed XML document can be retrieved according to vague 

queries. Vague queries are those queries which do not follow the 

semantic rules of current query languages. They occur when the exact 

matching user’s query does not retrieve the required information either 

because of the lack of experience in writing a query or the absence of the 

document’s schema. 
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4. The necessity of retrieving information from more than one XML 

documents without the need to specify an exact relative document. 

 

 

 

 

The above hypotheses are tested throughout this research by using the 

System Development Methodology (SDM) (Nunamaker et al., 1991; Morrison 

and George, 1995; Hevner et al., 2004). This methodology has been widely used 

by software developers and information system specialists (Meersman et al., 

2008; .Yousof et al., 2011)  As depicted in Figure 1-1, this methodology consists 

of four main stages: 

1. Identifying research problems: This stage focuses on drawing up the 

research questions due in part to the lack of theories in the research field 

and/or build upon existing theories. In this thesis, the research questions 

are set from two XML fields, compressing the XML documents and 

querying them. As a result, a new XML compressor is introduced 

(CHAPTER-4) with the ability to retrieve information from the 

compressed document according to vague queries. The designed system 

Figure 1-1: System Development Methodology (Morrison and George, 1995) 
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may improve the querying process to retrieve information from XML 

documents. 

2. Prototyping and evaluation: In the second stage, SDM spotlights the 

implementing or prototyping the proposed system. It starts by designing 

the conceptual model of the proposed system, identifying the necessary 

requirements, designing the complete architecture of the system, and then 

implementing the system to prepare it for the evaluation process by 

testing and analysing it. In this thesis, the complete architecture and the 

detailed design of the system are laid out in CHAPTER-4, the 

implementation part is in Appendix-F, and the evaluation process is 

given in CHAPTER-5. 

 
3. Conceptual and practical contributions: As a final stage, SDM sets 

the main contribution to the knowledge. In this thesis all the 

contributions, conclusions, and future developments are presented in 

CHAPTER-6. 

1.3 Research Questions 

Following the SDM as shown in Figure 1-1, outlining the research questions 

should be made before proceeding further with defining the actual prototype. 

The research into this thesis focused on two main parts, each of which has its 

own set of questions to be addressed: 

1. Is it possible to design a new compression technique that has the ability 

to compress XML documents and achieve a better compression ratio 

without the need for the document’s schema or its DTD? 

2. What is the influence of the structure redundancy on the overall size of 

the XML document? 

3. What are the main types of vague queries and when could they occur? 

Has the existing XPath query language the ability to answer vague 

queries? If not, what is the required expansion that should be made on 

XPath to provide it with such ability? 
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4. How does one determine the relevant XML document(s) from thousands 

of documents without the need to scan them completely for time saving 

purposes? And is it possible to retrieve information from more than one 

XML document without the pre-specification of these documents using 

one XPath query? 

1.4 Motivations and Objectives 

This work is initially motivated by the need to expand the XML query 

languages. These languages are treating the user’s query in Boolean nature 

(Campi et al., 2009) in which a specific XML node is selected if and only if it 

satisfies exactly the query or part of it. This case applies more restrictions to the 

inexperienced user or in the case of schema absence.  

XML has become a focus for research in both the database as well as the 

document research communities (Harrusi et al., 2006; Moro et al., 2008). This 

research is motivated by the strength of XML such as its simplicity, the 

separation of data from the structure, interoperability, and human and machine 

readability. All these features and more make the XML document a reliable way 

for data transformation on the web. However, the redundancy in the structure of 

the XML documents enlarges their sizes, the very reason that inspired 

researchers to produce compression techniques dedicated to XML. Other 

researchers were interested in retrieving information from the compressed XML 

document to make it easier to use these fairly large documents with low resource 

devices. Although these techniques succeeded in answering several types of 

queries, they are incapable of processing vague queries, which is yet another 

motivation for this research. 

The main objective of this research is to investigate the different types of 

vague queries and set new methods to solve these queries in the case of existing 

compressed XML document. The design and implementation of a system that 

has the ability to compress the XML document and retrieve information from the 

compressed file according to vague queries, let alone the need to decompress 

only the retrieved relevant information, is another objective of this research.  
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Since it was very difficult to have access to the source code of an XML 

compressor to be used as a first stage to achieve the main objective, another 

objective therefore was to design and implement a new XML compressor that 

has the ability to achieve a better compression ratio than the existing techniques. 

1.5 Research Contributions 

This research will contribute to the fields of XML compression and XML 

retrieving in the following areas: 

1. A new XML compression technique is introduced that compresses XML 

documents efficiently and independently from their Schema or the DTD. 

The designed compressor achieved a compression ratio of 1.83 which is 

higher than the best existing techniques.  

2. Identify the exact ratio of the redundancy of the XML structure. This 

redundancy is abridged by up to half the size of the original file.  

3. The main contribution of this research is the introduction of a new 

method to answer vague queries, a kind of queries that can be submitted 

by naive users or via the absence of the document’s schema. The new 

method is adjusted to process the vague queries under the compressed 

XML documents and retrieve the most related results. 

4. Introduce the idea of retrieving information from XML documents 

without specifying the exact documents that have the required 

information. 

1.6 Overview of the Thesis 

Apart from Chapter 1, the thesis has six more chapters: 

Chapter 2: Research Background. This second chapter sets forth the research 

background including all the techniques used in the research process. The most 

important features of XML documents are listed, accompanied by their types, 

the API used to parse them, the techniques used to retrieve information from 
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them, and their query languages. This chapter also lists all the query types and 

provides a complete definition of vague queries.  

Chapter 3: State-of-the-Art Technologies. This chapter is separated into two 

main parts. The first one concentrates on discussing the main XML compression 

techniques and sets the differences between them, their advantages and their 

drawbacks. The second part discusses the techniques that have been used to 

solve vague queries from XML documents.   

Chapter 4: XCVQ Design. This chapter illustrates the design of the XCVQ 

system starting with the main architecture of the complete system. Then it sets 

the detailed design of the compressor, followed by the design of the 

decompressor. This chapter ends by giving the complete design of the vague 

query processor. It is supported by the algorithms that are used to answer the 

research questions. 

Chapter 5: XCVQ Testing, Evaluation and Discussion. This chapter sets all 

the testing process for the XCVQ-compressor to obtain the compression ratio and 

for the XCVQ-query processor to determine its functionality and the 

performance. An extensive test has been done to compare XCVQ with the other 

existing techniques. All the results of these tests can be seen in this chapter. It 

ends with the discussion part that illustrates the main features, advantages, and 

drawbacks for the designed system. 

Chapter 6: Conclusion and Future Works. This chapter summarizes the main 

conclusions and contribution of the research and suggests more development and 

expansion for further research.  
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CHAPTER 2 Research Background 

2.1 Introduction 

This chapter provides the background to our research. It comprises several 

key parts. The first one illustrates the most important techniques that motivate 

and support this research. XML, being the most important key technology, is 

presented in this section, alongside the structure of the documents which would 

be crucial in the design of the compressor. XML query languages and the main 

differences between them are also discussed because of their importance in 

retrieving information from such documents. 

2.2 XML Commencements and importance 

Before the rise of the internet, 1980s witnessed the invention of Standard 

Generalized Markup Language (SGML) as a way to display information 

dynamically. Later, in 1995, W3C recommended SGML to be used for the 

internet. Problems occurred when using SGML included the lack of widely 

supported style sheets, complexity and instability in the software that were using 

it, and the difficulties in interchanging SGML data due to its varying levels 

among SGML software packages. 

In 1996, the first XML working draft was intended to be a powerful substitute to 

SGML. It was first recommended by the World Wide Web Consortium (W3C) 

in 1998 to be used as a mark-up language for storing and exchanging data 

through the web. The most recent recommendation was published in 2008, 

which is the fifth edition of the XML (W3C, 2008). In a very short period of 

time, XML has become the basis for data exchange through the Internet. This is 

due to its several features such as the following (NG et al., 2006; Gerlicher, 

2007; Groppe, 2008): 
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 Readability:  XML is readable by both human and machine. This 

means that the data represented by XML can be used by different 

users and by different parsing code. 

 

 Interoperability: This is the ability of the hardware and software to 

use XML documents without the need to make any changes to the 

software or the data itself. This means that XML data is stripped of 

any dependency on software and machine.  

 
 

 Long term usability: Since XML documents are represented using 

the Unicode; these documents are expected to stay in secure storage 

and usage for years (Augeri et al., 2007; De Meo et al., 2007) . 

 

 Extensibility: This means that there are no fixed set of tags that 

should be used to represent data. 

 
 

 Generality: XML documents have the ability to represent different 

kinds of data representation such as images, sounds, videos, texts, 

etc. 

 

 Internationality: Almost all written languages can be represented in 

XML documents since they support Unicode (Norbert and Kai, 

2004). 

 
 

 

In spite of all these advantages, XML has also some weaknesses: 

• They have a huge amount of redundancy which makes these documents 

demand high storage memory to be archives, high band width to be 

transmitted, and high cost to be processed. 

• The huge amount of technologies surrounding it complicates the use of 

these documents such as schema, DTD, XSLT, SAX, DOM, XPath, 
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XQuery. These technologies render the use of these documents 

somewhat difficult especially with naive users or in cases where these 

technologies are absent, it would be just as difficult as they are 

considered necessary for dealing with XML documents. 

• The problems that can occur when dealing with the document namespace 

should be carefully sorted out otherwise other problems and 

complications could occur during the processing of these XML 

documents.  

2.2.1 XML document types 

The main building blocks of any well-formed XML document are nested 

open tags and their equivalent close tags. These tags can be formed as follows 

(Hunter, 2000; Anders, 2009; Goldberg, 2009): 

 

1. Elements: each element starts with an open tag (<p>) and ends with an 

end tag (</p>). Everything between and including these tags are an 

element. The general structure of an element is as follows: 

 <e  at1=”v1”  at2=”v2”  atn=”vn”>d1d2d3…dm</e> 

Such that   n≥0, and m≥0 

(1)  

Each element has an element-name (e) which should follow the 

following rules: 

o Case sensitive names.  

o Consist of characters, numerals, underscores and tabs. 

o Start with a character or an underscore. 

o Should not start with xml or XML. 

 

Elements can have optional element-value ({d1d2d3…dm} in (1)) which 

represent the actual data values for the XML document. 

 

2. Attributes: attributes (if any) appear within an element and they provide 

more information about that element. Each attribute has an attribute-

name ({at1, at2, atn} in (1)) which should follow the same rules for an 
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element-name, and an attribute-value ({v1, v2, … vn} in (1)) which can be 

any printable character between a pair of quotations. 

 

3. Data text: the data in a XML document could either be attribute-values 

or element-values. This text can be a list of any keyboard printable 

character from the Unicode set ({d1d2d3…dm} in (1)). Some escape 

character should be used to embed some of the characters in the data text 

such as (&lt;), (&gt;), (&amp;), (&quot;), and (&apos;) to represent (<), 

(>), (&), (“), and (‘) respectively. 

 
 

4. Comments: comments can be added anywhere in the XML document to 

provide any further description but is not part of the main document. In 

XML, the comment start tag is (<!--) and the end tag is (-->). 

 

5. Declaration: this single statement (if any) should be the very first line of 

the document. It supplies the XML processor with information such as 

the version, encoding and other information about the document. Its start 

tag is (<?xml) and its end tag is (?>). 
 

 

Table 2-1: Differences between Data-centric and Document-centric XML 

Criteria Data-centric Document-centric 

XML role Superfluous Significant 

Order Not very important Significant 

Consumption Machine Human 

Data granularity Fine Large 

Examples Catalog and flight schedules Books and advertisements 

 

 

 

Depending on the amount of data (attribute-values and element-values) in 

the XML document, Bourret (2005); and Manning et al. (2008) classified XML 

documents into two types, either data-centric or document-centric. Table 2-1 

lists the main differences between these two types according to certain criteria. 
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With data-centric XML documents the roles of the XML elements and attributes 

are to arrange these data in atomics. These documents are usually created and 

used by machines such as the XML documents that are generated by a Database 

Management System, or those used to transfer data between different databases. 

In contrast, XML role in document-centric XML documents is very 

important since it is the only way to organize this document into large units of 

information. The order of the elements inside these documents is important since 

any change in the order can produce a completely different document. 

2.2.2 Java API for XML (JAXP) 

Java programming language, and some other languages, provides different 

types of XML Application Programming Interface (API) such as SAX, DOM, 

and XSLT (Violleau, 2001; McLaughlin and Edelson, 2006; Williams, 2009) in 

order to process the XML documents by means of writing a computer 

programme using several programming languages. SAX (Simple API for XML) 

scans the XML document sequentially and throws up events that the 

programmer can handle. These events are thrown by the parser when it detects 

the start-document, end-document, start-element including a list of all its 

attributes, end-element, and characters. The programmer should write suitable 

codes for each event to process an entire XML document. Since each event 

occurs only once for each element, all the required work needed to process the 

document should be done in one cycle.  
 

Table 2-2: SAX and DOM features 

SAX DOM 
Event based model Tree-like structure 

Sequential access  Random access 

Required low memory  Memory intensive 

One scan for the document Multiple traverse for the 

document 

1998, David Megginson's 1998, W3C’s 
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By using DOM (Document Object Model) parser, the document is 

represented in the main memory of the computer as a tree-like structure. The 

programmer can write the code to traverse this tree as many times as s/he needs. 

Table 2-2 sets out the main features of SAX and DOM. It shows that using 

DOM parser is memory consuming and since the aim of this research is to 

reduce the amount of memory used to process the XML documents, the designed 

system used SAX parser to process these documents. 

While SAX and DOM parsers should be used through a programming 

language, XSLT (XML Style-Sheet Language Transformation) is a declarative 

language which is used to transform the XML document into another document 

type (Tidwell, 2008; Williams, 2009). Its two main purposes are: (1) produce 

HTML documents from XML documents for browsing purposes, and (2) 

retrieve information from the XML document using the XPath. 

2.2.3 XML Retrieval 

XML retrieval is considered to be one of the semi-structured retrieval 

techniques (Manning et al., 2008). This adds more challenges to meeting the 

user’s needs. The first difficulty in structured retrieval is that the user requires 

only parts of the documents and not the entire document like unstructured 

retrieval techniques do (Stamatina et al., 2006).  This challenge leads to another, 

which is the identification of the most relevant parts from the document to the 

user’s query. To solve this difficulty there are two approaches, either to retrieve 

the largest units of the document that contains the required information (top 

down)  (Norbert and Kai, 2004; Jiaheng, 2006), or to retrieve the smallest unit 

by starting the search from the leaves of the XML tree (bottom up) (Fuhr et al., 

2006). 

Retrieving information from XML documents provides the users with the 

extra abilities to specify the exact piece of information needed or to combine 

different parts from of the document that meet the user’s need. The user’s 

queries can specify the required information as well as the place where this 

information is to be found inside the document. For instance the user may ask 
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about “a table of all XPath functions in XPath description chapter”. In this case 

the “XPath functions” and the “XPath description” are about the content of the 

document, while the “table” and the “chapter” are about its structure.   

 XML documents can be retrieved according to their type either text-centric 

or data- centric retrieval. In text-centric, an approximate matching process is 

used to match the text of the query with the text of the document while the 

structure role is as a framework within this process (Manning et al., 2008). Since 

the matching process is done with the data part of the XML document, the 

retrieved information is expected to be long and they should be ranked. On the 

other hand, data-centric retrieval retrieves only attribute values and numeric data 

using exact match. The retrieved information from this type is short and the 

ranking is not significant. 
 

 

 

 
Another classification for XML retrieving techniques is done according to 

which part is more significant in the user’s query: the content part or the data 

part (Hunter, 2000; Sanz, 2007). Content-Only (CO) queries are rich of text and 

focus on the data part of the XML document. The user can add some structural 

constraints to the query to specify the granularity of the required information. As 

seen in Figure 2-1-(a), the XPath query focuses on retrieving the title and the 

content of a paragraph which is considered the data content of the document. To 

process these queries, some of the techniques use the traditional IR techniques 

by completely ignoring the structural constraints and treat the XML document as 

//title[title = “XML and XSLT”] and sec[par = “We declare our choice of an associated 
style sheet for an XML instance”] 

(a) 

//article/section/para[1] 
 

(b) 

Figure 2-1: XPath Queries Examples. (a): CO query. (b) CAS query 
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a traditional text file, while other techniques decompose the query into several 

small queries and process each one separately.  

Content-And-Structure (CAS) retrieval takes into their considerations the 

structural part of the XML document and provides the user with extra 

advantages to accurately specify the exact part required from the relevant 

document. The XPath example in Figure 2-1-(b) concentrates on finding the first 

paragraph which is in a section for the specific article.  

2.2.4 XML Query Languages  

Different kinds of query languages have been proposed in order to retrieve 

specific information from an XML document. All these languages have a 

common feature in that the user should specify the exact XML document(s) 

wherefrom s/he would like to retrieve the information. This section spotlights 

the main features of some of the query languages which are either recommended 

by W3C (XPath, XQuery, XPoint, and XLink) or used by Initiative Evaluation 

of XML retrieval (INEX) working group (NEXI). 

- XPath 
 

Standing for XML Path language, it is a descriptive language which takes an 

XML document and a user query as an inputs and produces specific nodes from 

this document as output (Kay, 2004). 
 

 

 

Figure 2-2: The role of XPath between other XML 
query languages (W3Schools.com, 2006a) 
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It is considered to be the core to all other XML query languages, as 

illustrated in Figure 2-2 (W3Schools.com, 2006a). The main building blocks for 

an XPath expression are: (1) expressions deal with atomic values which include 

comparative and arithmetical operations, (2) expressions for selecting specific 

nodes from a tree, and (3) operation on every item in a specific sequences, such 

as using the “for” expression. 

In 1990, W3C recommends XPath 1.0 as an XML query language (W3C, 

1999). In 2010 W3C recommend the last version of XPath 2.0 to be a standalone 

query language or to be embedded with XSLT or XQuery (W3C, 2010a). It 

comes with some developments on the first version. These changes make XPath 

easy to use, improve its interoperability, simplify the manipulation of string 

contents and Schema-typed content, and to increase its efficiency. These 

developments include: (Holman, 2002; Kay, 2004; W3C, 2007b; Kay, 2008) 

1. Data types: XPath 2.0 offers new data types such as integers, single 

precision, date, time, and any data type that can be defined by the user 

through XML Schema. 

2. Path expressions: Not very big changes on path expression compared to 

XPath 1.0, only the ability to use the function call within the path 

expression is a slight change. 

3. Operators: addition operators are used to support XPath 2.0 functions. 

Examples of these operators are: “is” to test if two expressions return the 

same set of nodes, “<<” and “>>” to test the order of the two operands, 

“except” and “intersect” to find the difference and the intersection 

between two node sets, and  “eq”, “ne”, “lt”, “le”, “gt”, “ge” to make 

a comparison between atomic values and return a node set. 

4. Functions: Some new functions are added to the list of the available ones 

in XPath 1.0 such as: “max()”, “min()”, “avg()”,  functions to 

manipulate the new data types like date, time, and QNames, 

generalization of string manipulation functions to deal with user-defined 

types. 

Path expressions thus provide a very powerful mechanism for selecting 

nodes within an XML document, and this power lies at the heart of the 

XPath language (Sigurbjornsson and Trotman, 2003; Kay, 2004). 



27 

 

- XQuery  
 

In 2007, W3C first recommended XQuery as an XML query language and 

they made the last recommendation in 2010 (W3C, 2010b). This querying and 

descriptive language uses XPath to retrieve information from XML documents 

whereas the simplest XQuery expression is an XPath expression. The main 

engine in XQuery is the “FLWOR” expressions which stand for For-Let-Where-

Order-Return. In these expressions, the “for” expression selects a specific node 

list from a specific document which can be repeated several times within the 

same expression. The “let” expression associates with each node in the node 

list(s) generated by the first expression or another node retrieved from another 

XML document. The “where” expression filters the resulting list according to a 

specific condition. The “order” expression sorts the list according to a specific 

atomic. Finally, the “return” expression specifies the required information from 

the node list(s).  

The main advantage of XQuery over XPath is that XPath by its own cannot 

organize the output of the query in a specific format while XQuery does 

(McGovern et al., 2003). Although XML Style sheet Language Transformation 

(XSLT) can do organize the format of the retrieved information, but it could be 

difficult for the user to use it due to its recursive-structure and mixed name-

spaces. 

Another feature in XQuery is its capability to retrieve information from 

more than one specified XML documents. XPath is suffering from the lack of 

this feature. 

Although it is considered to be very easy to use, XQuery is a read-only 

query language. This means that XQuery does not have the ability to exchange 

or create an XML document like SQL to the databases. 
 

- XLink and XPointer 
 

XLink stands for Linking Language and recommended by W3C in 2001 

(W3C, 2001). The main purpose of XLink is to make either “simple” links 
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between two XML resources, or “extended” links between more than two XML 

resources (W3Schools.com, 2006a). With the “simple” links, any element inside 

the XML document can be linked with another resource such as an image, a text 

file or even another XML document just like the “a” element in HTML which 

performs Unidirectional link. When the link type is “extended” this means that 

the link will be bidirectional between the XML document and the other 

resource(s). 

XPointer stands for XML Pointer Language and recommended by W3C in 

2003 (W3C, 2002). It uses XLink to point to specific data part within the XML 

document. This means that XPointer query should starts with the URI of the 

document followed by “#” sign which indicates the starting of the XPointer 

query which is actually an XPath query with some extra functions. 
 

- NEXI 
Stands for Narrowed Extended XPath I is an XML query language that follows 

the steps of XPath with some modifications. First, the NEXI retrieval engine 

designed to deduce the semantics from the query in reverse to XPath which has 

predefined semantics. Furthermore, NEXI extended the use of the contains() 

function, which is used by XPath to indicate an element that is contain a specific 

content, to be about() function to indicate the element to be about the content. 

This adjustment allows NEXI to deal with fuzzy queries. NEXI has been used 

for several purposes, such as question answering, multimedia searching, and 

searching heterogeneous document collections. (Trotman and Sigurbjornsson, 

2005) 

2.3 Types of Queries 

Queries are questions written by users to search, change or retrieve a specific 

piece of information from different types of files such as text, image, or database 

files. Depending on the query functionality, they can be categorized into three 

types. The first type is the selection queries which are responsible for selecting 

and retrieving the relevant document or sub-documents and returning the results 

to the user. The action queries are the second type. These queries implement a 
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specific action on the selected file or document, such as delete, add, or update a 

piece of information. The third type is the aggregate queries which find the 

statistical amount for the selected attributes such as average, max, min ...etc.  
 

 

Table 2-3: Query types 

Query type Description XPath Example 

Simple 

queries (SQ) 

Retrieve part of the 

document according to 

general specification 

List countries names 

//countries/country/name 

Criteria 

queries (CQ) 

Retrieve part of the 

document according to a 

specific criterion. 

List countries with less than 10 million 

population 

//countries/country[population < 

10000000] 

Conjunctive 

queries (JQ) 

Retrieve part of the 

document according to 

conjunction of two or more 

criteria. 

List industrial countries with less than 

10 million population 

//countries/country[economy=”industry”] 

and //countr[population < 10000000] 

Range 

queries (RQ) 

Retrieve information 

according to a range 

between given minimum and 

maximum values. 

List countries with population between 6 

million and 15 million 

//countries/country[population > 

6000000] and 

//countries/country[population < 

15000000] 

 

Vague 

queries (VQ) 

Retrieve information when 

there is no Boolean matching 

between the user’s query 

and the relevant XML 

document (Stasiu et al., 

2005; Rajpal et al., 2007). 

List countries with population between 6 

million and 15 million 

/country/population between(6000000, 

15000000) 

 

 

Depending on their complexity, selection queries can be categorized into five 

main types. Table 2-3 lists these types and describe their features supported by 

an example for each type and its equivalent XPath query (written in Italic in the 

table). The amount of the retrieved information varies according to the query’s 
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level of complexity such that the simplest query retrieves general information 

while the more complex query tries to retrieve more specific information. 

Since vague queries are the central issue in this research, the following 

section provides a brief description of such queries and how they can appear in 

information retrieval domain. 

2.4 Vague Queries 

XML query languages force the users to follow their rigid rules to write a 

syntactically true query. This process is not easy to be maintained even for 

expert users (Huh et al., 2000). Moreover, in order to retrieve the required 

information these languages require previous full knowledge about the 

document’s schema what is considered to be difficult to ordinary users. If the 

query does not follow the semantic rules of the querying language or it does not 

meet the document’s schema, null information will be retrieved because these 

query languages use Boolean conditions wherein a condition is either true (exact 

match) or false (no match) (Campi et al., 2009). On the other hand, handling the 

fault-tolerant for the user’s query makes it easier for the user to retrieve 

approximate information when vague conditions appear in the query (Zhao and 

Ma, 2009). 

Vague queries are those that occur when exact matching queries fail to 

retrieve the required information (Fuhr, 1999; Bodenhofer and Küng, 2001; 

Zhang and Kankanhalli, 2003; Dutta et al., 2009). In this case the vague query 

needs to be generalized to retrieve the relevant information and rank this 

information in the bases of their relevancy. Vague queries can be cause by 

several factors:  

 

1. Schema: although XML Schema or its DTD are very important when 

creating and developing the document, their absence during the 

retrieving process leads to null information retrieved since all XML 

query languages demand complete knowledge over them. Even if the 

schema exists, it is difficult to figure out the exact structure of its XML 

document (Sakr, 2009; Al-Hamadani et al., 2011).  
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2. Users: there are two main kinds of XML retrieval users, the experts and 

the naïve. The experts have the ability to write syntactically true queries 

depending on their knowledge of the rules of the query language and 

have the ability to navigate the document’s schema and write the 

appropriate query. However, different kinds of XML schema available 

such as XML Schema, DTD, and RNG, and even expert users are only 

aware of one or two of them. On the other hand, the naïve users have low 

experience in the rules of the language and in the schema navigation. The 

latter case could produce vague queries which has spelling errors in 

either the structure or the content of the document, different case used in 

the query and in the original document, or out of order or weak path 

(Florescu et al., 2000; Campi et al., 2009).   

 

3. The query Language: all XML query languages do not have the ability to 

retrieve approximate answers according to a user’s query. Moreover, the 

functions in the query languages sometimes do not meet the user 

requirement. All these restrictions in the languages can lead to vague 

queries (Buneman et al., 2003; Norbert and Kai, 2004). 

 

4. Unknown document: whenever a query is submitted, it should specify the 

XML document(s) that has the required information. If the user does not 

know the exact document or the information is disseminated in more than 

one document, a vague query occurs (FAZZINGA et al., 2009). 
  

2.5 Chapter Summary 

This chapter described the origins of the XML technique and its 

development. It showed the importance of the XML documents and their usage 

as well as their drawbacks. Since these documents have a special structure, this 

chapter provided a brief description of this structure and the different types of 

documents. To deal with XML documents, many APIs have appeared. This 
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chapter listed the well known APIs and described their features and differences. 

Because this research lies in the field of XML retrieval, the chapter highlighted 

different kinds of XML retrieval techniques and query languages used to retrieve 

parts of the entire XML document. The main features of all types of queries are 

illustrated with the focus being on vague queries. 
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CHAPTER 3 State of the Art Technology in 
Compressing and Querying XML Documents  

 

 

Since this research consists of two main parts, the XML compressor and the 

vague query processor, this chapter discusses the main XML compression 

techniques in its first part. It will highlight the advantages and disadvantages of 

these techniques and discusses the differences between them. The second part of 

this chapter will focus on the vague query processors used to retrieve 

information from XML documents. 

3.1 XML compression techniques 

Recently, large numbers of XML compression techniques have been 

proposed. Each of which has different characteristics. This section discusses the 

differences between these compressors and their main features.  

XML compressors can be classified into two classes either to be XML-blind 

or XML-conscious compressors. XML-blind or general purpose compressors 

deal with the XML document as a traditional text document ignoring its 

structure and apply the general purpose text compression techniques to compress 

them. These techniques can be classified into two main classes (Salomon, 2007), 

either to be statistical or dictionary based compressors (Augeri et al., 2007; 

Augeri, 2008). The statistical or the arithmetic compressors represent each string 

of characters using a fixed number of bits per character. PPM, CACM3, and 

PAQ are examples of this kind of compressors (Cleary and Witten, 1984; 

Moffat., 1990; Alistair et al., 1998).  On the other hand, dictionary compression 

techniques substitute each string in the input by its reference in a dictionary 

maintained by the encoder. WinZip, GZIP, and BZIP2 are examples of this 

compression class (WinZip, 1990; GZip, 1992; BZip2, 1996).  
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Table 3-1: The main differences between XML-conscious and XML-blind compressors 

XML-conscious compressors XML-blind compressors 

Information about XML documents is usually 

available in schema which can be optimized by 

XML-conscious compressors to get better 

compression. 

Cannot take advantage of the schema to get 

useful information about the file. 

They utilize the structure of XML document 

and the type of the data inside. 

They do not take in consideration the entire 

file structure or data types. 

Some of them abridge the original XML tree in 

a summary or compact tree for better ratio. 

They cannot exploit redundancies in the XML 

tree structure. 

Most of them are powerful in compressing 

small or large files. 

They do not efficiently compress small files 

that can be used in transactions for e-business. 

(Hung, 2009) 

 

 

On the other hand, XML-conscious compressors try to utilize the structural 

behaviour of XML documents in order to achieve better compression ratio and 

less time in comparative with the XML-blind type. Table 3-1 sets the main 

differences between the two aforementioned compressors types.  

The main theory of data compression, which described in (Shannon, 1948), is 

the formulation of the entropy rate (H) which indicates the limit to lossless data 

compression. The value of (H) depends on the probability of each symbol in the 

information source. The most popular entropy value is: 

 

             (Shannon, 1948) (2)  

 

Where,  is the probability of the symbol . 

In this paper, Shannon proved that the compression ration cannot exceed the 

value of (aH), where (a) is the number of symbols in the source. 

Since XML are heterogeneous data, the theory of XML compressors is to 

separate the data from the structure, separate the data into containers according 

to the type of the data, and apply a general purpose compressor for each 

container. This process can lead to produce an optimal compressor over 

heterogeneous data. (Liefke and Suciu, 2000) developed the entropy value for 

XML compression to be: 
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      (Liefke and Suciu, 2000) (3)  

 

Where,  are the entropies for the sources, and   are 

the probabilities of these sources. 

XML-conscious compressors can be classified according to their ability to 

querying the compressed documents into two main sub-classes; these are 

queriable and non-queriable compressors. While the queriable compressors have 

the ability to retrieve information from the compressed XML document without 

the need to completely decompress the document, the non-queriable XML 

compressors are used to compress the XML documents for archival purposes 

only and they achieved better compression ratio than the queriable compressors.   

3.1.1 Queriable XML Compressors: 

The main goal of this type of compressors is to provide the ability to the 

compressed version of the XML document to be queried without complete 

decompression them. The compression ratio for these compression techniques is 

lower than the blind-XML or the non-queriable techniques.  
 

 

Table 3-2: The main limitations of some queriable XML compressors. 

Compression 

technique 

Limitations 

XGrind o Requires partial decompression to handle range and partial-match queries. 

o Lower compression ratio comparative with other compressors. 

XPress o Limited experimented data corpus to depth 5 and 6 only and large documents (>12MB).  

o Handles only exact-match, partial-match, and range queries. 

XQzip o Ignoring IPs and comments from being compressed. 

o Critical in choosing the appropriate block size to balance between the good compression ratio 

and efficient query processing. 

o The need for partial decompression to handle string matching queries. 

XQueC o Using too many structures with their pointers which yield to huge space overhead. 

o Long compression and decompression time. 

XSAQCT o Lossless compressor since it does not taking into consideration the order of the attributes in 

an element. 

o Queries only the exact match queries. 
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SXSI o Designed to increase the querying speed. 

o The compression ratio has not been tested. 

o Supports only navigational queries and string matching predicates. 

 

 

However, these techniques are important when dealing with resource-limited 

applications and mobiles. Some of these techniques are homomorphic 

compressors, which mean that the compressed file is a semi-structured one. In 

the next section, a brief description of some of these techniques will be given, 

and Table 3-2 explains their main limitations. 

The first queriable compressor is XGrind by (Tolani and Haritsa, 2000). This 

technique replaces the elements and attribute names with the letters “T” and 

“A” respectively, followed by a unique identifier which represents the 

substituted element or attribute name. Moreover, it replaces the end tags with 

“/” sign. The data part of the document is encoded using Huffman encoding. For 

the purpose of querying the compressed document, XGrind’s query processor 

finds the simple path to check whether it satisfies the path in the given query. 

The main drawback with XGrind is that while it has the ability to process exact-

match and prefix-match queries on the compressed documents, a whole range of 

or partial-match queries require partial decompression to be handled. 

In order to solve XGrind’s partial decompression problem,  Xpress (Min et 

al., 2003) uses the reverse arithmetic encoding method to encode the label paths 

of the XML document as a distinct interval in [0.0, 1.0) . Using the relationships 

between these intervals will allow for the ability to evaluate path expressions 

more efficiently on the compressed XML document. Furthermore, by using this 

method, XPress uses path-by-path matching instead of element-by-element 

matching that has been used in XGrind.  To encode the data part of the XML 

document, XPress uses different compression techniques depending on the type 

of the data and without the need to the human interference. (Min et al., 2009) 

Because XGrind and Xpress are homomorphic, the relationship between the 

size of the compressed document and the size of the original one is linear. To 

solve this problem (Cheng and NG, 2004) proposed a new technique (XQzip) 

that depends on extracting the Structure Index Tree (SIT) from the tree structure 

of the original document. The SIT depth is non-linear to the structure tree which 
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makes this technique accomplishes higher compression ratio and faster query 

evaluation.     

Instead of using (SIT), XQueC (Arion et al., 2007) uses the structure 

summary tree in order to efficiently stores the XML documents. The space 

needed to store the structure summary (SS) is: 

 

     (Arion et al., 2007) (4)  

 

This represents the summation of the space needed to store a tag node plus 

the space needed to store all its successive nodes. Furthermore, instead of using 

hash table to store the tags and attribute names, XQueC used the structural 

identifiers, which has been used in some querying techniques (Al-Khalif A et al., 

2002; Grust, 2002; Halverson et al., 2003; Paparizos et al., 2003) in order to 

uniquely identify a node in the XML tree. This technique considered to be the 

first one that uses XQuery as a query language.  

In their work, (Müldner et al., 2009) created an annotation tree to succinctly 

store the structure of the XML document and use the containers to store the data 

part of the document. Their compressor, named XSAQCT, has two versions; the 

first was dependent on the XML Schema and the second was schema-free. They 

showed that the first version is better than the second from the standpoint of 

compression ratio even though it was slower. 

Finally, (Arroyuelo et al., 2010) proved in their proposed SXSI compressor 

that the XPath queries can be performed better when using an indexing 

technique to compress the XML document. This technique is based on 

producing a labelled tree from the XML Tree structure and then indexing this 

tree into a bit array and compressing the data part of the document using a 

general back-end compressor. Although the compression ratio of SXSI is not 

calculated, the querying time and the retrieving quality are better than traditional 

retrieving techniques. 
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Table 3-3: A comparison of different compression techniques. 

Compression 

technique 

XML-

Conscious 

Schema 

dependant 

queriable Compression 

technique 

Back-end 

compressor 

Average 

compression 
ratio 

WinZip 

(WinZip, 

1990) 

No No No Reducing 

algorithm+ 

AES 

encryption 

- 0.48 

BZip2 

(BZip2, 1996) 

No No No Burrows-

Wheeler+  

Huffman 

- 0.24 

GZip 

(GZip, 1992) 

 

No No No LZ77+ 

Huffman 

- 0.36 

XMill 

(Liefke and 

Suciu, 2000) 

Yes No No Dictionary-

based 

Gzip, Bzip2, 

PPM 

0.55 

Millau 

(Girardot and 

Sundaresan, 

2000) 

Yes Yes No Dictionary-

based 

GZip, deflate 0.58 

xmlppm 

(Cheney, 

2001) 

Yes  No  No  Statistical 

models 

PPM 0.57 

dtdppm 

(Cheney, 

2005) 

Yes  Yes  No  Statistical 

models 

PPM 0.58 

XWRT 

(Skibinski et 

al., 2007) 

Yes No No Dictionary-

based 

Gzip, LZMA, 

PPM 

0.54 

RNGzip 

(League and 

Eng, 2007) 

Yes Yes No Deterministic 

automaton 

Tree 

Gzip 0.58 

LXC 

(Bonifati et 

al., 2009) 

Yes  No  No  words 

abbreviation 

- 0.59 

XGrind 

(Tolani and 

Haritsa, 2000) 

Yes No Yes Dictionary-

based 

Huffman 0.57 

Xpress 

(Min et al., 

2003) 

Yes No Yes Dictionary-

based 

Reverse 

encoding 

0.57 

XQZip 

(Cheng and 

NG, 2004) 

Yes No Yes Dictionary-

based 

Gzip 0.66 

XQueC 

(Arion et al., 

2007) 

Yes No Yes Binary 

encoding 

Depending 

on the type of 

data 

0.68 

XSAQCT Yes  Yes  Yes  Tree-size Bzip2, gzip, 0.80 

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard�
http://en.wikipedia.org/wiki/Encryption�
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(Müldner et 

al., 2009) 

elimination  PAQ8 

SXSI 

(Arroyuelo et 

al., 2010)  

Yes  No  Yes  FM indexing BWT n/t 

 

 

Table 3-3 shows the main differences between the various compression 

techniques mentioned above. It is clear that the compression ratio of all XML-

conscious compressors are better than traditional blind-compressors and the 

compression ratios of the queriable compressors are still less than those of non-

queriable techniques. 
 

 

 

 

Figure 3-1 demonstrates the distribution of the compression techniques over 

the years, where NQC and QC refer to the non-queriable and queriable 

compressors respectively. It shows that the years 2006 and 2007 witnessed an 

increasing amount of compression for both queriable and non-queriable 

techniques. The overwhelming rise in the number of queriable-XML 

compressions in the years 2008 and 2009 reflects the importance of this type of 

compressors. 

Figure 3-1: The distribution of the compression techniques over the 
years 
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3.2 Processing Vague Queries techniques 

In order to elevate the flexibility of querying XML documents, many 

researchers have produced varied approaches to meet that need.  

In their work (Damiani and Tanca, 2000) proposed a technique to solve 

what they called “blind queries” which refers to the queries submitted with the 

absence of XML schema. This technique first transforms the XML document 

into a labelled graph and provides each node a number which represent the 

importance of this node in the XML document. The graph then is expanded to 

perform a fuzzy graph. To process the vague queries, it creates a graph for the 

query and performed a similarity match between the two graphs. 

According to the importance of approximate retrieval, (Schlieder, 2001) 

proposed a query language named approXQL since the existing XML query 

languages have the ability to answer queries according to exact matching only. 

This language is designed to answer vague queries on data-centric XML 

documents by encoding them into a labelled tree. It uses three pointers to encode 

each node of the document’s tree by associating it with its pre-order number, the 

number of its ancestors, and the pre-order number of its most right leaf. To 

answer vague queries, it makes useful node transformation on them which are 

insertion, deletion and renaming. Each transformation is associated with its cost 

and the results that require less transformation cost are the most relevant once. 

Instead of expanding a query language, (Amir-Yahya et al., 2002) proposed 

a new algorithm that depends on converting the XML document and the user’s 

query into a tree-like structure and perform some relaxation process on the latest 

tree by deleting, inserting and renaming the nodes in that tree to be matched with 

the original XML document. Each of these processes attached with a score in 

order to compute the Top-k relevant answers. This technique solves the problem 

of generating large amount of sub-queries when using the query re-writing 

algorithm which has been used in approXQL. In this paper, the authors debate 

applying the traditional IR techniques to retrieve approximate answers and they 

prove that those techniques are not sufficient enough when dealing with XML 

documents, however, converting the document to a tree-like structure and 

applying approximate matching on it is more appropriate.  
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In 2004, FleXPath technique has been proposed by (Amer-Yahia et al., 

2004). FleXPath depends on merging the XPath query language that has exact 

matching with full text search that has approximate matching. First, the query is 

converted to a tree and used it as a template to find the approximate matches 

within the XML document. The query relaxation process used by FleXPath 

depends on deleting a structural predicate if at least one of its nodes does not 

belong to the document structure and the deletion process will not affect the tree 

structure of the query.  Furthermore, this technique performs more relaxation 

such as contains-relaxation by replacing the parameter of the contains() function 

with its ancestor,  tag-relaxation by replacing a tag with its super tag, value-

relaxation, and type-relaxation. 

Instead of relaxing the query, (Lalmas and Rolleke, 2004) transforms the 

query to a conjunction query by adding an “OR” between the query’s path and 

its predicate and changes each “AND” in the query with an “OR” to increase the 

recall precision. In this technique the XML document passes into two 

probabilistic transformation processes. In the first pass, each element, attribute 

name, attribute value and element value is attached with a probability value to 

indicate the importance of this element in the whole document using 

probabilistic object-oriented logic. The output from the first pass is transformed 

into probabilistic relational algebra expressions. This technique changes the 

XML document into a new one which is much bigger than the original.  

In the same year, (Mandreoli et al., 2004) proposed a new approach for 

answering approximate queries to retrieve all the relevant parts of the XML 

document not only the exact matching. This approach finds the syntactic 

similarity between the XML Schema and the user’s query, written in XQuery 

query language, and rewrites the query to match this Schema. It works with the 

XML Schema instead of working with the XML document directly in order to 

retrieve relative information from a repository of documents. Although this 

technique has the ability to retrieve 90% of the relevant information, it shows 

conflicts when the root node of the different schemas are the same as the root 

node in the query. 

In 2006 (Li et al., 2006) proposed FLUX to process only range queries in 

their fuzzy appearance. It uses B+-tree in order to identify the relevant leaf 

nodes to the given user’s query. The path from the root to the relevant leaves is 
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used as signatures to be matched with the path in the query to determine their 

relevancy.  Using the Bloom filter, FLUX converts the path in the query and the 

path signatures into hash tables and compare between them to extract the most 

relevant paths. The implementation process for FLUX is limited only to two 

XML documents and the 100 tested queries include only the year and date range 

queries with random selections. Their test explains that FLUX perform good 

retrieval with higher speed that other relative techniques. 

While FLUX tried to process fuzzy range queries, TIJAH (Mihajlovic et al., 

2006) tried to process only two vague cases in NEXI query language. This 

technique finds the list of synonyms for each element name in the user’s query 

using WordNet “A Lexical Database for the English Language”, and it uses 

these synonyms as new keywords to be searched in the XML document by 

rewriting the query using the new elements. Furthermore, this technique 

generalizes the path in the query in order to look for the elements in the whole 

XML tree. 

Depending on the aforementioned FleXPath approach, (Campi et al., 2009) 

proposed a new technique called FuzzyXPath that expands XPath query 

language to include fuzzy cases. The main purpose of this work was to 

determine the degree of similarity between two trees by providing a weight to 

each node to determine its importance within the document. The weight is 

calculated depending on the level of the node within the XML document and the 

number of its children. FuzzyXPath adds new functions to the list of available 

functions in XPath such as SIMILAR to find the similarity between the given 

node and the nodes in the document, and CLOSE to find the similarity between 

the given value and the data in the document. It provides more flexibility in path 

structure by adding NEAR and BELOW functions. 

In our previous work (Al-Hamadani et al., 2009) we proposed a new 

technique to process vague queries by decomposing it into CAS and CO queries 

and then apply the normal retrieval process for each part. The results from the 

retrieval process are combined again to obtain the final results. The technique 

applied on health care record and it shows good retrieval precision. 

(Fredrick and Dr.G.Radhamani, 2009) proposed a framework to extend 

XQuery language to include fuzzy queries. They tried to generalize the FLWOR 

to include natural language words, such as good, bad, etc. to get more precise 
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results. It depends on the fuzzy-set theory by (Zadeh, 1965) to transfer each 

fuzzy word to a range of values and then retrieve the most relevant parts from 

the document.  

 

3.3 Problem Identification 

The previous sections list several compression techniques that have the ability 

to process different kinds of queries. Table 3-4 lists all the discussed queriable 

compression techniques and shows the types of queries that can be processed by 

each technique. Some of the compressors require partial decompression to the 

compressed XML document in order to process some of these queries.  
 

 

Table 3-4: Query types with the compression techniques process each. 

Compression 

techniques/ 

query types 

Simple 

queries 

(SQ) 

Criteria 

queries 

(CQ) 

Conjunctive 

queries  

(JQ) 

Range 

queries 

(RQ) 

Vague 

queries 

(VQ) 

XGrind  
* * *  

Xpress   
* *  

XQZip    
*  

XQueC      
XSAQCT      

SXSI      
* Partial decompression required 

 

 

It is clear that the entire existing compressors do not have the ability to 

process vague queries since this type of queries is complex and needs intensive 

research to  resolve it. 

For this reason, the research in this thesis is focused on how to handle 

different types of vague queries in retrieving information from compressed XML 

documents. 



44 

3.4 Chapter Summary 

This chapter illustrated the main types of general purpose compressors and 

focused on XML compression techniques which rely on two types, either as 

queriable or non-queriable techniques.  Since this research is dealing with a 

queriable compressor, this chapter concentrated on the existing techniques, listed 

their main features and the differences between them and the types of queries in 

the process. Finally, the chapter also demonstrated different techniques that have 

the ability to process vague queries and the key differences between them.  
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CHAPTER 4 XML Compressing and Vague 
Querying (XCVQ) Design  

 

 

As shown in the literature review from the previous chapter, there are a 

good number of studies in the field of compressing XML documents and 

querying the compressed version without the need to fully decompress. 

However, vague queries, which are one of the most important query types, have 

been processed to retrieve information from raw XML documents and not from 

compressed ones. 

Depending on the SDM as illustrated in Figure 1-1, the design of the 

complete system should be made, followed by its implementation which can be 

seen in Appendix-B. This chapter illustrates the design architecture of the XCVQ 

(an XML Compressing and Vague Querying) which has the ability to compress 

the XML documents and use the compressed files in order to retrieve 

information according to vague queries. It starts with the main architecture of the 

system followed by the design of each of its parts, namely XCVQ’s compressor, 

Decompressor, and the query processor. 

4.1  System Architecture  

As illustrated in Figure 4-1, the XCVQ system consists of two main stages. 

The first is designing a new XML compression technique which converts the 

normal XML documents to a compressed version. The second is designing a 

retrieving technique that processes the XPath vague queries in order to retrieve 

the relevant information from the compressed document accordingly.  

 



46 

 

 

 
 

The design of the XCVQ does not rely on the XML Schema or the DTD of the 

document. This is due to several reasons: 

1. The main purpose of designing XCVQ is to process vague queries which 

are usually written, as illustrated in a previous section, by inexperienced 

users who may not want to have another technology linked with their 

documents. 

2. Even if the schema for a document exists, it could not have been 

accessible to the user. 

3. Since the main purpose of any compressor is to reduce the storage 

memory and the transition bandwidth, XCVQ saves the amount of 

memory required to store the schema. 

As illustrated in the design of the XCVQ, all the compressed XML documents 

are stored in a repository which is going to be used in the retrieving process. To 

the best of our knowledge, XCVQ may well be considered to be the first 

retrieving technique that has the ability to retrieve information from more than 

one XML document without requiring the pre-specification of the documents 

needed to be retrieved and without dependence on the document’s schema. This 

XML 
Documents

XCVQ-
Compressor

Compressed 
Files Repository

XCVQ-Query 
Processor

Retrieve Doc. to 
the user

Figure 4-1: Preliminary Architecture of XCVQ 



47 

approach helps users retrieve more relative information no matter which 

documents contain this information. The complete design of the XCVQ is 

illustrated in Figure 4-2. 

 

 

 

 

The following sections demonstrate the design of each part of the system 

starting with XCVQ-Compressor (XCVQ-C), passing by XCVQ-Decompressor 

(XCVQ-D), and ending with XCVQ-Query Processor (XCVQ-QP). 

4.2 XCVQ-C Design 

XCVQ-C compressor takes an XML document as the input and creates the 

compressed version from this document by passing through several steps. An 

Relevant 
information 

Figure 4-2: The complete design of XCVQ 
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Structure 
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example in Figure 4-3 from (W3Schools.com, 2006b) will be used in the 

following sections in order to simplify the exact process of each step. 

4.2.1 Creating the Structured-Tree & its Abridgment 

As illustrated in Figure 4-2, the first step in compressing the XML 

document is to create the structured-tree using the SAX parser. This parser scans 

the XML documents only once and it cached several events such as start-

document, start-element, end-element, and end-document. Section 2.2.2 contains 

more details about this parser and its advantages. During this parsing process the 

complete path-dictionary was created and separates the data part of the XML 

document from its structure to be abridged to the structured-tree. The structured-

tree for the running example is shown in Figure 4-4. The data under each root-

leaf path are stored in containers linked to that path.  
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Each data item is accompanied with a number IDorder that represents the 

order of this item within the document (the number between the brackets in 

Figure 4-4). IDorder counts each start element, data value, attribute name, 

attribute value and end element. According to this number, each node is 

uniquely identified for the purposes of decompression process and in the 

querying process. Previous XML compressors used two numbers for each node 

in the structured-tree to identify this node uniquely. These numbers represented 

by the pre-order and post-order traversal of that node [IDpre, IDpost] (Cheng and 

NG, 2004; Arion et al., 2007; Arroyuelo et al., 2010) which required: 

<CATALOG> 
<CD no="1">     

  <TITLE>Empire Burlesque</TITLE>      
  <ARTIST>Bob Dylan</ARTIST>      
  <COUNTRY>USA</COUNTRY>    
  <PRICE>10.90</PRICE>  
  <YEAR>1985</YEAR>  

  </CD> 
<CD no="2"> 

  <TITLE>Hide your heart</TITLE>  
  <ARTIST>Bonnie Tyler</ARTIST>  
  <COUNTRY>UK</COUNTRY>  
  <PRICE>9.90</PRICE>  
  <YEAR>1988</YEAR>  

  </CD> 
<CD no="3"> 

  <TITLE>Romanza</TITLE>  
  <ARTIST>Andrea Bocelli</ARTIST>  
  <COUNTRY>EU</COUNTRY>  
  <PRICE>10.80</PRICE>  
  <YEAR>1996</YEAR>  

  </CD> 
<CD no="4"> 

  <TITLE>When a man loves a woman</TITLE>  
  <ARTIST>Percy Sledge</ARTIST>  
  <COUNTRY>USA</COUNTRY>  
  <COMPANY>Atlantic</COMPANY>     
  <PRICE>8.70</PRICE>  
  <YEAR>1987</YEAR>  

  </CD> 
 <CD no="5"> 

  <TITLE>Black angel</TITLE>  
  <ARTIST>Savage Rose</ARTIST>  
  <COUNTRY>EU</COUNTRY>  
  <PRICE>10.90</PRICE>  
  <YEAR>1995</YEAR>  

  </CD> 
<CD no="6"> 

  <TITLE>1999 Grammy Nominees</TITLE>  
  <ARTIST>Many</ARTIST>  
  <COUNTRY>USA</COUNTRY>  
  <PRICE>10.20</PRICE>  
  <YEAR>1999</YEAR>  

  </CD> 
  </CATALOG> 

Figure 4-3: An XML example 
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  (5)  

 

Where  represents the number of bits needed to store the structured-tree 

that contains N nodes. While the number of bits required to store the same 

structured-tree in XCVQ-C is shown in equation (6).  
 

  (6)  

 

 

Since XCVQ-C uses only one number to store a node, the number of bits 

required to store a single node is . In this stage XCVQ-C saves half the 

number of bits required to store the structured-tree. 
 

 

 

 

 

 

 

 

 

 

Figure 4-4: The structured-tree for the example in Figure 4-3 

 

4.2.2 Creating the Containers 

XCVQ-C creates the containers from the structured tree, as seen in Figure 

4-2. First each node is replaced with a number that represents the entry of that 
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(17) Bob Dylan                      
(18) Bonnie Tyler                 
(19) Andrea 
Bocelli                 
(20) Percy Sledge                 
(21) Savage Rose                    
(22) Many

(23)
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(38) 1985                                   
(39) 1988                                   
(40) 1996                                   
(41) 1987                                   
(42) 1995                                   
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0 CATALOG 
1 CD 
2 NO 
3 TITLE 
4 ARTIST 
5 COUNTRY 
6 PRICE 
7 YEAR 

 
 
/0/1/@2 (3) "1"(4) "2" (5) "3" (6) "4" (7) "5" (8) "6" 
/0/1/3 (10)Empire Burlesque(11) Hide your heart(12)Romanza(13) When a man loves a 

woman(14) Black angel(15) Grammy Nominees 
/0/1/4 (17) Bob Dylan(18) Bonnie Tyler(19) Andrea Bocelli(20) Percy Sledge (21) Savage 

Rose(22) Many 
/0/1/5 (24) USA(25) UK(26) EU(27) Atlantic(28) EU(29) USA 
/0/1/6 (31) 10.90(32) 9.90(33) 10.80(34) 8.70(35) 10.90(36) 10.20 
/0/1/7 (38) 1985(39) 1988(40) 1996(41) 1987(42) 1995(43) 1999 
 

(a) 

(b) 

Figure 4-5: Creating containers process. (a) the path-Dictionary. (b) the container. 

node’s name in the path-dictionary. The structured-tree is traversed to create the 

containers. Each container has an index and data set. The path from the root to a 

leaf is used as index to the container and all the data under that path are the data 

set to this container.  

For the running example, the path-dictionary and the containers are 

illustrated as in Figure 4-5, (a) and (b) respectively. 

 

 

 

4.2.3 Compressing the Containers 

After preparing all the containers and replacing the element’s names in the 

containers with their entry in the pathDictionary, now the contents of the 

containers should be compressed using a back-end compressor. To do this, 

XCVQ-C uses two compressors to make comparison between them, LZW and 

GZIP compressors.  

The granularity used by XCVQ-C is container/path, which means that after 

all the data parts of the document are settled in their appropriate containers, the 

back-end compressor is applied to compress each one of the containers 

separately. The decision made to choose this granularity is towards achieving a 
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balance between the compression ratio and the decompression process required. 

When dealing with back-end compressors, the higher the amount of data, the 

better is the compression ratio achieved. At the same time, this amount of data 

should not be the entire data part of the document, since they need to be 

decompressed in order to answer queries concerning them, so the technique 

needs to minimize the amount of data being decompressed. The previous XML 

compression techniques used different granularities to compress the XML 

documents using one of the back-end compressors, as shown in Table 4-1. 

 

 

Table 4-1: Compression granularity comparison. 

XML compression 
technique 

Compression 
granules 

XGrind Value/tag 

XPress Value/path 

XQzip Blocks 

XQueC Container item/tag 

XSAQCT Container/tree-

structure  

SXSI - 

XCVQ Container/path 

 

 

- LZW Compression Technique 
 

This is one of the dictionary-based lossless compressors which developed in 

1984 from LZ78 by Lempel, Ziv and Welch (Salomon, 2007). It has been used 

in UNIX as a program compressor in 1986 and it is still being used by GIF, TIFF 

and PDF files to compress images (Murray and VanRyper, 1996). The tokens in 

LZW are pointers to their entries in the dictionary which starts with the first 256 

positions occupied by the first 256 ASCII characters before any other entry.  

Although it performs good compression ratio it suffers from problems. All 

the pointers to the dictionary should be larger than 8-bit since the first 256 
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entries are occupied from the beginning. This makes these pointers to be at least 

3-bytes to accommodate all the entries in a document. Moreover, this technique 

is considered to be slow since its progress is one character at a time.  
 

- Gzip Compression Technique 
 

This is another example of dictionary-based lossless compression software 

which is based on Deflate compression algorithm. This software used by many 

applications such as HTTP protocol, the PNG (Portable Network Graphics), 

PNG images, and PDF files. The Deflate algorithm was designed in 2003 by 

combining the LZ77 and Huffman algorithms (PKWare, 2003; Salomon, 2007). 

Deflate uses different block sizes in order to compress the input data. The size of 

the blocks is determined according to the available memory and the size of the 

data. This algorithm provides three modes for each block, (1) No compression 

when the file is already compressed or it is random; (2) A fast mode that uses 

two fixed code tables in the encoder and they will not been written in the 

compressed file; and (3) A powerful mode that uses several code tables 

generated by the encoder and they should be written in the compressed file.  

4.3 XCVQ-C Algorithms and Their Correctness 

Since putting the complete compressing process in one algorithm could 

not be very clear, the designed algorithm is separated into three sub-algorithms. 

The separation process is made depending on the main parts of the XML 

document: start-element or attribute name, end-element, data, and end-

document. This section illustrates the design of the algorithms in each of the 

previous XML parts and the formal correctness proof of each one of them. The 

process of correctness proof depends on specifying the set of preconditions P:{ 

P1, P2, ..., Pn} and the postconditions Q:{ Q1, Q2, ..., Qn} and the algorithm A 

such that   [ref]. The algorithm is considered to be true is it terminates and 

all the postconditions are true upon completion.  
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4.3.1 startElement algorithm 

This algorithm in Figure 4-6 is processed whenever a start element or an 

attribute name occurs in the XML document. In this algorithm, each element or 

attribute name (eName) encountered in the XML document must be added to the 

list of path-dictionary if it is not added before (lines 6-8). The index of (eName) 

in the path-dictionary is used from now on instead of the element’s name itself 

to be added to the structured-tree (lines 11-14). When there is a value in data 

this means that the algorithm is dealing with an attribute. In this case, the 

attribute value alongside with its order is added to the leaf of the current path in 

the Structured-Tree (lines 16-17). 

1. Algorithm startElement(String eName, String data) 

2. let pathDictionary=[i0, i1, ..., in] 

3. let structured-Tree=[j0, j1, ..., jm] 

4. let pathStack=[kp, kp-1, ..., k0] 

5. let IDOrder= the current order 

6. if (eName  pathDictionary) 

7.       pathDictionary=[i0, i1, ..., in]  eNamen+1 

8.       Q”= n+1 

9. else 

10.       Q”= q where iq =eName  

11. pathStack=[kp, kp-1, ..., k0]  [Q”p+1] 

12. currentPath  k0 + k1 + ...+ kp 

13. if (currentPath  structured-Tree) 

14.       Add currentPath to structured-Tree 

15. IDOrder++ 

16. if (data is not empty)  

17.       Add (IDOrder,data) to the leaf node of [j0, j1,  

      ..., jm]    

18. End. 

Figure 4-6: (startElement) algorithm 
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To proof the formal correctness of this algorithm, the preconditions and the 

postconditions should first be specified: 

 

P:{ eName=a, data=b are two strings, 

pathDictionary=[i0, i1, ..., in]=c represents the current 

pathDictionary, 

structured-Tree=[j0, j1, ..., jm]=d represents the current structure-

tree, 

pathStack=[kp, kp-1, ..., k0]=e represents the current path elements 

stored in a stack} 

 

Q: {a  c, 

a  e, 
e  d, 

In case of attributes, b  d} 
 

Correctness:  

 
{eName=a, data=b, pathDictionary=c, structured-Tree=d, pathStack=e} 
if (eName  pathDictionary) 
      {a c, data=b, pathDictionary=c, structured-Tree=d, pathStack=e} 
      pathDictionary=[i0, i1, ..., in]  eNamen+1 
      Q”= n+1 
              {a  c, data=b, pathDictionary=c, structured-Tree=d, pathStack=e} 
else 
      Q”= q where iq =eName  
              {a  c, data=b, pathDictionary=c, structured-Tree=d, pathStack=e} 
 
pathStack=[kp, kp-1, ..., k0]  [Q”p+1] 
{a  c, data=b, structured-Tree=d, a  e} 
 
currentPath  k0 + k1 + ...+ kp 
if (currentPath  structured-Tree) 
      Add currentPath to structured-Tree 

      {a  c, data=b, e  d, a  e} 
IDOrder++ 
if (data is not empty)  
      Add (IDOrder,data) to the leaf node of [j0, j1,  
..., jm] 

     {a  c, b  d, e  d, a  e} = Q 
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4.3.2  endElement algorithm 

The algorithm in Figure 4-7 is processed when the end of an XML element 

encountered which means that there is a piece of data ready to be inserted in a 

leaf node of the structured-tree (if that element holds data). The suitable current 

path can be known from the contents of the pathStack and the data should be 

added in the leaf node of that path. 

P:{ eName=a, data=b are two strings,  

pathStack=[kp, kp-1, ..., k0]=c represents the current path elements 

stored in a stack, 

structured-Tree=[j0, j1, ..., jm]=d represent the current structured-

tree} 

 

Q: {b  d} 
 

Correctness:  

 
{eName=a, data=b, pathStack=c, structured-Tree=d } 
If data  null 
     {eName=a, data=b, pathStack=c, structured-Tree=d } 
     Add (IDOrder,data) to the leaf node of [kp, kp-1, ..., k0] 

          { b  d }= Q 

 

1. Algorithm endElement(String eName, String data) 

2. let pathStack=[kp, kp-1, ..., k0] 

3.   let structured-Tree=[j0, j1, ..., jm] 

4.   If data  null 

5.      Add (IDOrder,data) to the leaf node of [kp, kp-1, ..., 

k0] 

     
Figure 4-7: (endElement) algorithm 
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4.3.3  endDocument algorithm 

When the whole XML document traversed, the algorithm in Figure 4-8 is 

processed. First the complete pathDictionary should be added to the output 

compressed file (line 7). The second step is to create the containers from the 

structured-tree and fill them with the compressed data (lines 6-10).  

P :{ pathDictionary=[i0, i1, ..., in]=a represent the complete 
pathDictionary,  
structured-Tree=[j0, j1, ..., jm]=b represent the current structure-
tree, 
F =  } 
 

Q: {a  F, N Containers  F } 
Correctness:  
 
{PathDictionary=a, structured-Tree=b F=  } 

Add pathDictionary to F 
{a  F, structured-Tree=b } 
For all the N branches in structured-Tree 

1. Algorithm endDocument () 

2.    let pathDictionary=[i0, i1, ..., in]    

3.    let structured-Tree=[j0, j1, ..., jm] 

4.    let F be the compressed file =  

5.    Add pathDictionary to F 

6.    For all the N branches in structured-Tree 

7.       index= Collect all the nodes [j0, j1, ..., jk] 

8.       data= the contents of the leaf node for the path 

[j0, j1, ..., jk] 

9.       data = GZipCompress(data) 

10.       Add a Container(index, data) to F 

11. End. 

Figure 4-8: (endDocument) algorithm 
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      {a  F, structured-Tree=b } 
      index= Collect all the nodes [j0, j1, ..., jk] 
      {a  F, structured-Tree=b, index=path nodes} 

data= the contents of the leaf node for the path [j0, j1, 
..., jk] 

      data = GZipCompress(data) 
               {a  F, structured-Tree=b, index=path nodes, data is 
compressed} 

Add a Container(index, data) to F 

{a  F, structured-Tree=b, a container  F} 
end 

{a  F, structured-Tree=b, N Containers  F }=Q 

 

4.4  XCVQ-D Design  

As shown in Figure 4-6, to decompress the compressed XML file, XCVQ-D 

first applies the back-end decompression technique, either LZW or Gzip, to 

decompress only the contents of all the containers in order to get the data shown 

in Figure 4-5 for the running example. 

The second step is to reconstruct the XML document from the indexes and 

the contents of the containers, and the path-dictionary. The main operation here 

is to determine the order of each element, attribute, and data value within the 

XML document. This order is the IDorder which is accompanied with the data in 

the containers but it should be checked against the number of data items written 

in the decompressed XML document  so far. To check the consistency of 

the order, XCVQ-D uses equation (7) such that: 
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Definition-1: If XCVQ-D has a piece of data [( )d], where  denotes 

the IDorder accompanied with the data in a container,  is the 

ID order which denotes the order of the data written so far in , 
then the new order of D should be calculated by getting the 

difference between ( ) and the  ( ) taking into consideration the 

number of the elements and attribute names still not written in 

, such that: 

 

  (7)  

 

Where: 

: The number of elements and attribute names written in . 

: The number of elements and attribute names in the index of 

the container having this data. 

Then the value of Corder is checked and a performance made as 

shown in equation(8).  

 
 

  (8)  
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If Corder equals to (0) this means that the current IDorder is 

consistent with the number of elements and attribute names in . 

Otherwise, the difference between the current path in and the 

index path for the current container should be added to before 

adding the required data. 

 

 

 

Since the decompression method depends on the existence of data, the 

resulted decompressed XML document is lossless from the data side while the 

dummy nodes (the element that has no data but consists of an open tag and a 

close tag) could be lost. This case appears in documents that are converted from 

a database system with poorly structured documents. 

4.5 XCVQ-D Algorithm and its Correctness 

The algorithm in Figure 4-10 illustrates the process of XCVQ-D which takes 

the pathDictionary and the compressed containers as its parameter list. The main 

idea of the decompression algorithm is to look for a data value which has the 

minimum IDOrder and put it in the decompressed file in its appropriate place. 

From the design of the XCVQ-C the first data value in each container always has 

the minimum order within this container, the process of looking for the 

minimum order will check only (n) item, where (n) represents the number of 

containers instead of searching all the data in the containers. This process 

reduces the time required to decompress the containers to O(n) instead of 

O(n×m) where m represents the number of data items in each container. 

If this piece of data is the first data value in the XML document (line 9) 

then, all the path’s elements in the index of the container holding this data are 

pushed in a stack which represent the current working path and add these 

elements (or attribute names) to the new XML document ( ) as an open tags 

(lines 10-12).  
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Before adding the data to the output file, a consistency check is made, by 

following the instructions in lines 16-19, where ({}) means set difference 

between the contents of the stack and the index path. If there is no consistency 

(line 17) then the difference between the stack content and the index path is 

added to the output file as losing tags and then the piece of data is added to the 

output file. In every addition to the output file, the value of (dataOrder) is 

updated (lines 12, 19, and 21) to check the consistency between them each time. 

After adding the data to the output file, this data alongside with its order is 

deleted from the container. This process is done to keep the order of the first 

data items in all the containers in their minimum values and to release the 

memory storage used by these data values. 
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This process is continued until all the containers are empty, then all the 

content of the stack is added to the output file as closed tags to finish the new 

decompressed XML document.  

1. Algorithm XCVQ-D (pathDictionary [P0, P1, ...,Pm], containers 

[C0, C1, ...,Cn]) 

2. let currentPathStack=[Sk, Sk-1, ...,S0] 

3. let dataOrder= number of elements, attribute names, and data 

values in the outputFile  

4. While (the containers are still having data) Do 

5.  for i=0 to n 

6.      let minDataSet[(O0,D0), (O1,D1),... (On,Dn)]  first 

     element in each container 

7.      minOrder=min(O0, O1,..., On) 

8.      minData  Di from (minOrder, Di) 

9.   if currentPathStack=   

10.      currentPathStack  Ci.index 

11.        open tags of Ci.index 

12.      dataOrder=dataOrder+ number of open tags added 

13.    } 

14.    Else 

15.      currentPathStack  [Ci.index]-[currentPathStack] 

16.   dataCons=  

17.   if dataCons  0 

18.        

19.     dataOrder=dataOrder+ number of close tags added 

20.     Di 

21.   dataOrder=dataOrder+1 

22.   remove (minOrder, Di) 

23. } 

        

  
Figure 4-10: XCVQ-Decompression algorithm 
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The next paragraph discuss the correctness of the decompression algorithm 

by guarantee the one-to-one mapping from the compressed document to the 

decompressed document.  

The core of the decompression technique is to make sure that each part of 

the compressed XML document should return to its place in the original XML 

document. This is done in XCVQ by using the IDOrder which counts the order of 

each single part of the original document, such that: 

Odata(IDOrder)=Ddata(IDOrder) 

Where, Odata and Ddata represent a single piece of data in the original and the 

decompressed XML documents, respectively.   

As seen in Figure 4-5, the only Odata(IDOrder) stored in the compressed 

document are for the data part of the document to save the storage required. For 

instance, in the first container indexed (/0/1/@2) in Figure 4-5, the first data 

item (“1”) has its Odata(IDOrder)=3. This means that there are three pieces should 

be transferred to the decompressed XML document before transferring this part 

of data. These pieces are the three nodes in the container’s index (/0, /1, and 

/@2). 

To make this balance between Odata(IDOrder) and Ddata(IDOrder) in the 

decompression algorithm, the dataOrder variable was used (to represent 

Ddata(IDOrder)) to count every single piece of data written in the XML document. 

Before adding a data value to the decompressed XML document, the 

decompression algorithm checks if it is in its right place (i.e. if 

Odata(IDOrder)=Ddata(IDOrder) after taking onto consideration the expected number 

of pieces from the ). Otherwise a process is required to solve this inconsistency 

between the two values and as follows: 

1. Find the difference between the two IDOrders 

D=Odata(IDOrder) - Ddata(IDOrder) 
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This means that there are D pieces should be added to the decompressed 

file first. 

2. Add the D pieces of data that are in the current working path but not in the 

container’s index. 

3. Update Ddata(IDOrder) 

Ddata(IDOrder)= Ddata(IDOrder)+D 

 

4. Since  

D=Odata(IDOrder) - Ddata(IDOrder) 

Then  

Ddata(IDOrder)= Ddata(IDOrder)+ Odata(IDOrder) - Ddata(IDOrder) 

Ddata(IDOrder)= Odata(IDOrder) Which is the target of the decompression 

technique. 

4.6 XCVQ-QP Design 

The design of the query processor, as illustrated in Figure 4-7, consists of 

various stages. The output(s) from each stage is used as input for the other 

stages. The role of each stage and its design are discussed in the next sections 

using the same running example in Figure 4-3. 

4.6.1 XPath Query 

The current XPath query language does not have the ability to answer vague 

queries, since its work is based on a restricted Boolean matching; either the 

query matches part(s) of the existing document and retrieves those parts, or no 

retrieval at all is achieved if there is no match. XCVQ-QP uses XPath as a query 

language after expanding the original language to give it the ability to solve 

vague user’s queries. This expansion includes adding more flexibility in both 

path matching and data value matching in addition to adding some functions to 

the list of available XPath functions. 
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- Path Matching Expansion 
 

To increase the flexibility of XPath axes matching, XCVQ-QP provides 

some generalization to the XPath query that gives the users of XCVQ-QP the 

ability to retrieve the most relevant information to their queries (Grust, 2002; 

Amer-Yahia et al., 2004; Campi et al., 2009). These generalizations are the 

following: 

1. Eliminating the use of the recursive descent sign (//) and replacing it with 

the child operator (/) sign. This elimination increases the flexibility of 

XCVQ as shown in the following examples: 
 

Example (1): to retrieve all the (TITLE) elements from the XML 

example in Figure 4-3, an XPath query should be 

(/CATALOG/CD/TITLE). In this case the user should have a complete 

idea about the XML schema for that file to indicate the complete 

path from the root to the (TITLE) element. To retrieve the same 

information, XCVQ query is either (/CD/TITLE) or (CATALOG/TITLE), 

which is simpler than XPath queries and does not need any 

previous knowledge about the schema. 
 

Example (2): if the user need the (TITLE) element for the CD 

with (no) equals to “2”. The XPath query is 

(CATALOG/CD[@no="2"]/TITLE) while the XCVQ query is 

(/CD[@no="2"]/TITLE) which is again much simpler than XPath 

query. 
 

2. If the query tries to retrieve sibling elements, then using XPath would 

need to write two separate queries or one query with two parts 

connected by logical (and) operator. 
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Example (3): The elements (TITLE) and the elements (YEAR) are 

both siblings in the XML tree. The XPath query to retrieve all 

the data from the two elements is (CATALOG/CD/TITLE | 

CATALOG/CD/YEAR), while the XCVQ query to retrieve the same 

information is (/TITLE/YEAR). 

 

Example (4): if the user interesting in retrieving all the (TITLE) 

elements only for the CD published after (1990). The XPath 

Relevant 
Container

 

Figure 4-11: The architecture of the query processor. 
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query is (/CATALOG/CD/TITLE and /CATALOG/CD[YEAR>1990]), while 

the relevant XCVQ query is (/TITLE[YEAR>1990]). 

 

3. If the order of the path is not arranged properly, XPath query does not 

have the ability to retrieve information from the specified document, 

while XCVQ does. 
 

Example (5): using the same requirements of Example (3), XPath 

user should follow the same path from the root to the required 

element, while XCVQ query could be written as follows:  
(TITLE/CD/YEAR) 

 

4. Using XPath queries, the user should follow the case of the letters, since 

the XPath query is case sensitive language. This feature adds more 

complexity to the user and to the XML creator who has to follow those 

specific rules. XCVQ queries are case insensitive, which retrieve the 

information from the XML document even if the case is different.  
 

Example (6): all the XCVQ queries in Examples (1-5) can be 

written as following: 
cd/TITLE 
/CD[@no="2"]/title 
/TITLE/year 
title[year gt 1990] 
title/cd/YEAR 
 

5. When the system does not find a specific element within the XML 

compressed database, it tries to look for elements that are similar to it. 

For that reason, XCVQ-QP uses a string-similarity algorithm (White, 

2008) in order to match any misspelling in the elements or attribute 

names. If an element within the path is written in a wrong way, then the 

system will look for the nearest spelling element in the retrieved 

documents such that the similarity ratio should not be below 40%. After 

many experiments, we noticed that this percent is the best for retrieving 

the required element. If this number is less than 40, then non-related 

elements could be retrieved.  
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 The choice of string-similarity algorithm is made on the ground that it 

meets most of XCVQ-QP needs since this algorithm has the following 

features: 

1. If two strings have minor differences, they are considered to be similar 

(ex: heap, heard). 

2. If two strings have the same words but in different order, they are 

considered to be similar (ex: data base management system, managing 

data base). 

As shown in Figure 4-12, the string-similarity match algorithm 

takes two strings, and for each string it produces sets each of which has 

two adjacent letters in that string. Then the similarity is computed as in 

line (5) to determine the similarity ratio between them.  
 

 

 

6. XCVQ-QP has the ability to retrieve information from more than one file 

(FAZZINGA et al., 2009) even if the user does not specify these files in 

prior. As a simple example, if the user has the query (title/year) then s/he 

might get information about the titles and year of publication for CDs, 

movies, books or journals. Moreover, XCVQ-QP has the ability to 

compare the results from one file with the data from another file and 

retrieve the results accordingly. 
 

Example (7): Suppose the following user query: 

(catalog/book/author/bookstore[author="Erik Ray"]). This query is 

considered to be a merged from two queries, 

(catalog/book/author="Erik Ray") and (bookstore/book/author="Erik 

1. Algorithm string-similarity (String st1, st2) 
2. let st1= [s1s2s3 ... sn]   and st2= [c1c2c3 ... cm]    
3. st1Set= [s1s2][s2s3][s3s4]...[sn-1sn] 
4. st2Set= [c1c2][c2c3][c3c4]...[cm-1cm] 

5.  

6. End. 

Figure 4-12: String-similarity match algorithm 
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Ray"). Each one is to retrieve all the books for the author’s name 

("Erik Ray") from two separate XML documents that follow 

different schemas. 
 

Example (8): suppose the following user query: 
(cars/car/price lt carType/Ford[model eq 2008]/price) 

In this query the user is interesting in looking for all the cars that 

their pricees are less than (lt) the 2009 Ford car price. XCVQ-QP 

first looks for the smallest price (x) in the path 

(carType/Ford[model eq 2008]/price) and then retrieve all the 

information from the path (cars/car/price) which are less than 

(x). Notice that the two paths are from two separate XML 

documents. 
 

- Data Value Matching Expansion 

In order to make more expansion on XPath queries to retrieve more 

relevant data from the XML document, XCVQ-QP adds a set of functions that 

deal with the data part of the document (Campi et al., 2009). Although some of 

these functions are adopted to be used in structural retrieval as well. The 

extended functions with examples of their use are illustrated in the next section. 

1. Synonym(x): This function is created to be used to retrieve information 

from both the structure and the data parts. It has only one parameter x 

and returns a list of synonyms for x.  

To do so, XCVQ-QP uses the WinterTree thesauruses engine 

(WinterTree, 2006)which provides a wide multipurpose dictionary. This 

engine provides the user the ability to modify its dictionary by adding new 

words with their synonyms or adding more synonyms to the existing 

words. 

If the list of synonyms is (S1, S2, …, Sn), then XCVQ-QP processes (n) 

queries by replacing each Si instead of the function call. 
 

Example (9): Suppose the query /cd/title/synonyms("time"). XCVQ-

QP replaces this query with 3 queries: 
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/cd/title/duration 

/cd/title/interval 

/cd/title/date 

It is clear that the use of the function in this example is for 

structure retrieving purposes. 
 

Example (10): Suppose the query /cd/country eq 

synonyms("Britain"),which retrieves information from the data part of 

the XML document. This query is replaced with two queries: 
/cd/country eq "UK" 

/cd/country eq "The United Kingdom" 

 
 

2. Similar(x): This function uses the String-Similarity algorithm, shown in 

Figure 4-8 in order to retrieve information according to one of the 

following conditions: 

a) If the user has doubt on the spelling of a string as shown in Example 

(11). 

b) If the similar strings to x are required as shown in Example (12). This 

function works on both the structure and the data parts of the XML 

documents depending on the previous conditions. 
 

Example (11): In the query /cd/title/similar(artest), the word artest 

has spelling error. The role of XCVQ-QP here is to find the similar 

element name from the retrieved documents and retrieve the required 

information accordingly. This query is replaced with /cd/title/artist 

for the running example. 
 

Example (12): In the query /cd/year/title eq similar("keep your 

heart") for the running example, the data required is similar to "keep your 

heart" which is replaced by XCVQ-QP  with cd/year/title eq "hide 
your heart". 

- Function Set Expansion 

The list of available functions in XPath query language includes string, 

Boolean and number functions. XCVQ-QP adds four functions to the number 

functions set. 
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1. Average(x): the avg() function in XPath provides the user the ability to 

get the average of a list of numbers specified as a parameter list for the 

function. This function is expanded by XCVQ-QP to provide the user the 

ability to specify an element from the XML document and find the 

average of the numerical values under that element.  

Example (13): The query /cd/title/average(price) retrieves all the data 

values of the title element and the average of the numbers of the price 

element.  

 

2. Median(x): This function is used to find the median for the list of 

numbers in the selected path.    

 

Example (14):  If the query /catalog/cd median(year)is applied, the user 

will get the median number for all the data values of the year element. 
 

3. Between(x,y): Instead of using and logical operator to retrieve 

information lying between two different intervals, XCVQ-QP introduce 

this function. It has two parameters which represent the data interval. 
 

Example (15):  The query /cd/title[price=between(9.0,10.0)] retrieves all 

the title elements if and only if the value of its price element is 

between the given interval. 
 

4.6.2 Query Decomposer 

This part of the XCVQ-QP is responsible for decomposing the XPath query 

into several sub-queries. This stage consists of two decomposition stages, as 

shown in Figure 4-9. Each stage has specific roles and results in a set of sub-

queries as in the following: 

 

Decomposition Stage -1: The main purpose of this stage is to specify the 

relevant documents from the compressed XML repository. This case occurs 
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when the user’s query does not specify the exact XML document to retrieve 

information from it. XCVQ-QP decomposes this query into (n) queries, where 

(n) represents the number of the relevant documents. 
 

Definition- 2 (relevant document): If     is 

the set of elements in the user’s query, and 

 is the set of all the compressed XML 

documents in the repository.   is considered to be 

relevant document if  , where  is the path-

dictionary for the specified document. If so, add  to the 

relevant repository and add  to . 

 

 

 

 

According to the definition above, a XML document is considered to be 

relevant if it has one or more of the query elements in its path-dictionary. All the 

relevant documents are collected in a small repository for 

relevant XML documents each of which is accompanied with its relevant sub-

query . All the elements and attribute names in  are replaced 

with its location in the path-dictionary of the relevant document. This process is 

done to prepare the sub-queries for the second decomposition stage. As an 

Figure 4-13: The design of XCVQ-Query Decomposer 
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example, if a sub-query is: title/cd/year from the running example, it is 

replaced with /3/1/7 where 3, 1, and 7 represent the entries of title, cd, 

and year respectively as shown in Figure 4-5.  

In the case when the user’s query  is submitted to retrieve information 

from a specific document, then the query does not pass by this stage and the list 

of sub-queries  has only the original query, i.e.  and the related 

document’s repository contains only the specified document. 

 

Decomposition Stage -2: After specifying the relevant documents, the role 

of this stage is to specify the relevant containers within these documents. This 

process causes further decomposition to the sub-queries 
 

Definition-3 (Relevant Container): Given  

represents the set of n containers for a relative document and 

each of these containers has an index with   elements

, and   represents the set of m 

elements in the sub-query accompanies C, to select the 

relevant container follow the steps: 

 

 the last element in the set 

 

     Add   to   to denote the list of relevant containers  

  if ,  copy   and add it to the list of the 

elements in   to denote a new sub-query. 

−1 

Repeat the above steps until the entire element in  are copied 

to a new sub-query. 

  

 

 

At the end of this stage only the relevant containers taken from the relevant 

documents are uploaded into the memory for ranking process. Each of these 

containers is accompanied with is sub-query as shown in Figure 4-13. 
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4.6.3 Query relaxation  

In this stage, the list of sub-queries  is being relaxed to determine the 

relevancy of each of these queries to the document. To do so, XCVQ-QP relaxes 

all the members of  according to each of the containers in  to compute the 

cost of this relaxation process for ranking purposes. To reach this goal, XCVQ-

QP adopts different kinds of relaxation processes. These types and their costs are 

listed below: 

1. Node insertion:   

This type of relaxation is done by inserting one node or more in the list 

of available query nodes. To do so, XCVQ-QP compares each container 

of the relevant XML documents with its sub-query.  
 

Definition-4 (Node-Insertion): Given a container  has an 

index with   elements and given 

 represents the set of m elements in the sub-

query accompanies the ith relevant document and jth relevant 

container. The relaxed sub-query =    

           

               

 

 

The cost of the insertion node(s) in a single sub-query is specified as follows: 

 

 
 

(9)  

 

 

 

2. Node renaming:  

After completing the first stage of relaxation, each sub-query is going to 

pass through the following procedure: 
 

Let  be the set of elements in 

the current sub-query,  be the set 
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of elements of the index for the current container 

associated with . 

For all ,  

if  then find the value of SimilarityRatio 

by applying the string-similarity(  

algorithm in Figure 4-8 such that .  

if (SimilarityRatio>50%) then  

       replace  with  

changes++ 

 

 

The cost of the node renaming process is calculated as 

follows: 

 
 

 
(10)  

 

 

 

3. Node deletion: 

After inserting all the required nodes from the index of a container, the 

extra nodes from the query should be removed.  
 

Definition-5 (Node-deletion): Given a container  has an 

index with   elements and given 

 represents the set of m elements in the sub-

query accompanies the ith relevant document and jth relevant 

container. The relaxed sub-query . 

              

 

 

The cost required to delete node(s) from a sub-query is: 
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(11)  

 

The deletion cost of all the sub-queries will never be equal to 1 (which 

means all the elements in the query are deleted), since all these queries 

passed by the insertion relaxation first and all the irrelevant containers 

are dismissed. 

 

 

4. Order relaxation:  

This is the last relaxation process which arranges the order of the nodes 

in each resulted sub-queries. The cost of this relaxation is shown in 

equation (11) such that changes represent the number of changing in the 

order of the elements in the sub-query. 
 

 
 

(12)  

 

 

Example (16):  For the running example, the lists of containers indexes are as 

follows: 

 

 

 

 

 

 

 
 

Suppose the following vague query:  
 
Q1=document(“cdcatalog.xml”)/title/cd/artest[year between(1990, 

1996)] 
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Since this query specifies the XML document to retrieve information from it, it 

is going to pass through stage-2 directly to specify the related containers. The 

following list illustrates the related containers alongside with the sub-query 

accompanied it: 
 

  

   

   

 

 

The insertion relaxation process updates the sub-queries to be as follows: 

 

 

 

 

 

The cost of insertion the required nodes are as follows: 

 

 

 

 

 

 

 

The node renaming relaxation process updates the sub-queries to be as follows: 
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The only sub-query affected by this stage is  and the cost of this process is as 

follows:  

 

 

 

The node reordering relaxation process updates the sub-queries to be as follows: 

 

 

 

 

 

The only sub-query affected by this stage is  and the cost of this process is as 

follows:  

 

4.6.4 Ranking  

After relaxing all the sub-queries, the process of finding the similarity 

between the containers’ index and the sub-queries is computed according to the 

following equation:  

 
Definition-6 (Query Similarity): To find the similarity between the 

given query (Q) and the relevant XML document, first the cost of 

all the relaxation process, that has been done on (i) sub-queries, 

should be found as follows depending on the previous equations 

in (9), (10), (11), and (12):  

 

 

 

 

  
(13)  
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Then the similarity is computed as follows: 

 

  (14)  

 

 
 

 

All the sub-queries are sorted according to their value of , the 

higher similarity the sub query has, the higher order it takes. 
 

 

 

Example (16): continue 

To find the similarity of the query Q1, first find the value of  as 

follows: 
 

 
 
And the similarity between the query Q1 and the pre-specified XML document 
is: 
 

 

4.6.5 Decompression 

During all the previous stages no decompression required except when the 

query has to retrieve information about the data part of the document. In this 

case only the relevant containers were decompressed to answer the sub-query 

having that part of data.  
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To retrieve the relevant parts of the XML document to the user, all the 

retrieved, ranked containers were decompressed using the same decompression 

technique discussed in section 4.4 in this chapter.  

Although there may be more than one relevant containers retrieved from one 

or more XML documents, all these containers were combined and decompressed 

into one XML document to perform one tree instead of a forest of multiple XML 

trees.  

If the user needs more queries to be processed on the resulted document, 

then this document should be compressed first to be within the XML repository 

and then it can be used in its compressed version. This feature is called 

composition and is borrowed from XQuery, in which the retrieved information is 

stored in a temporary XML file for further retrieving. 

4.7 Chapter Summary 

This chapter sets forth the main features in the design of the XCVQ system 

which has the ability to compress and/or decompress an XML document without 

losing its data. The significant feature of XCVQ is its ability to retrieve 

information from the compressed version according to different kinds of queries 

and especially vague queries. This required an expansion of the existing XPath 

queries through adding certain features to provide it with the ability to answer 

imprecise queries.  
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CHAPTER 5 XCVQ Testing, Evaluation and 
Discussion 

 

Since the testing and evaluation processes are part of SDM, this chapter 

illustrates the detailed testing of XCVQ and its ensuing evaluation.  Because the 

XCVQ model consists of three main parts, XCVQ-C, XCVQ-D, and XCVQ-QP, 

the testing strategy will involve testing each stage on its own. This chapter 

describes the testing of the three parts of the XCVQ model. 

5.1 Testing Strategy 

For the purposes of testing the complete model, the testing strategies are to 

be specified first. The next sections describe the behaviour testing strategy used 

(state graph) and then the functional testing strategies (white and black boxes).  

5.1.1 Testing XCVQ’s Behaviour 

For the purposes of testing the complete model, first the state diagram was 

defined to describe the behaviour of XCVQ and to implement the State Graph 

testing strategy (Beizer, 1990; Farrell-Vinay, 2008). 
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The following is the detailed description of each state of the state graph in 

Figure 5-1: 

State-A: This state is the GUI of the designed model. It represents the starting 

state in order to deal with all the other states. This state has three outputs: 

Out-1: to compress an XML document, go to state-B. 

Out-2: to decompress an XML document, go to State-C. This output is 

true only if (Out-1) is performed at least one time. 

Out-3: to write a query, go to State-D. This output is true only if (Out-

1) is performed at least one time. 

 

State-B: This state represents the process of compressing an XML document. It 

has two outputs: 

Out-4: to decompress an XML document, go to State-C. 

Out-5: to submit a query, go to State-D. 

 

State-C: This stage represents the process of decompressing an XML document 

and it has two outputs: 

Out-6: return to the starting state. 

Out-7: submit the decompressed document to the user, go to State-I. 

 

Figure 5-1: XCVQ State Graph 
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State-D: this is the most important state in the system which represents the query 

submission and checking its syntax. It has the following five outputs: 

Out-8: if the submitted query has syntactical error(s), return to the same 

stage to resubmit another query. 

Out-9: if the syntactically true query specifies the exact XML document 

to retrieve information from, go to Stage-E. 

Out-10: if the syntactically true query does not specify the exact XML 

document to retrieve information from, go to Stage-F. 

Out-11: take the out-of-errors query and the relevant XML document(s) 

as inputs to State-G. 

Out-12: from this stage the user can return back to the starting state. 

 

State-E: This state is responsible on retrieving the required XML document 

which specified by the query. It has only one output: 

Out-13: carry the unique XML document which is specified by the 

query to State-D. 

 

State-F: In the state, the set of relevant XML document is specified depending 

on the submitted query. This state has one output: 

Out-14: carry the set of the relevant XML document(s) retrieved from 

the repository to State-D. 

 

State-G: In this state, the query is processed and the required information is 

retrieved from the relevant XML document(s). It has three outputs: 

Out-15: to ignore the current query, return to State-D. 

Out-16: if more retrieval process required for the retrieved document, 

go to State-B to decompress the retrieved document first. 

Out-18: to submit the results of the querying process to the user, go to 

State-I 

 

State-H: This state returns the retrieved information as an XML document to the 

compressor to compress it and add it to the XML repository for further querying 

process and it has only one 
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Out-17: if the user required more querying on the retrieved information, 

go to State-B. 

 

State-I: This state is the final state where the resulted document(s) are submitted 

to the user. 

5.1.2 Testing XCVQ’s Structure & Functionality 

Both White-Box and Black-Box testing strategies are used in order to test 

the structure and the functional of XCVQ respectively. In the White-Box testing 

strategy all the subroutines in the system were tested to check every single 

statement. Depending on this testing strategy, different kinds of XML 

documents were derived to guarantee that all paths, logical decisions, loops, and 

data structures have been tested at least once. Firstly, the complete XCVQ 

system was divided into three main sub-systems: XCVQ-C, XCVQ-D, and 

XCVQ-QP in order to make it easier to follow the white-box testing strategy. 

Secondly, each sub-system was divided into small units to follow the unit white-

box testing type. For each unit three white-box tests were made:  

(1) Conditional test: In this test all the condition statements were tested 

checking the values of the Boolean variables and the correctness of 

the conditions. 

(2)  Data lifecycle & data structure test: the second white-box tests the 

lifecycle of the variables, their initializations, their value changing, 

and their expiring. It also checks the created data structures by testing 

their boundaries, applicability, initializations, and updating their data. 

(3) Loop testing: In this box all the loops in each unit were tested. The 

test includes the control variable initialization value, the truth of the 

control condition, the change in control variable, and the guarantee of 

its termination. 

 

While the structure of the designed system is crucial to the White-Box 

testing strategy, it has no role in the Black-Box strategy since this strategy is 



85 

aimed at observing the outputs of the designed system for certain inputs. The 

main aim of this strategy is to test all the functional requirements, and hence it 

attempts to derive the necessary data for achieving that aim. In this chapter, the 

intensive test for the chosen XML data corpus and the independent test were 

both achieved. 

During both previous strategies, a huge amount of XML data was used to 

cover different data ratios, depths, resources, and sizes. The overall tested data 

amounted to more than 1500 MB with 45 XML documents (see Appendix-C) 

 

5.2 Testing Factors 

To test the performance of the XCVQ, all the factors listed in Table 5-1 were 

used. The following is the complete description of these factors and their 

importance in the testing process: 

 

Table 5-1: XCVQ Testing factors 

Sub-system Testing factor 

XCVQ-C - Structure Compression Ratio 

- Structure Compression Time 

- Compression Ratio 

- Compression Time 

XCVQ-D - Structure Decompression Time 

- Decompression Time 

XCVQ-QP - Functionality test 

- Performance Test 
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 Compression Ratio (CR): this factor is used to test the difference 

between the original XML file size and the compressed file size 

as illustrated in Eq.(15) (Salomon, 2007). It is used in two stages. 

In the first stage, only the structure part of the document was 

compressed and in the second stage the data and the structure 

parts were compressed. Depending on this factor, the relation 

between CR and the Data Ratio (DR) and the relation between 

CR and the size of the file were found. For this purpose a corpus 

of XML documents was used. Its complete description is 

discussed in the next paragraph. 

  

 

 Compression Time (CT): This factor is used to determine the time 

required to compress each XML document in seconds (s) and to 

specify its relation with the file size. 

 Decompression Time (DT): This is the measure of the time 

required to decompress the XML document in order to obtain the 

original one. The effect of the file size on DT was obtained. 

 Query Functional Test (QFT): The purpose of this test is to 

determine the main types of queries that can be processed by 

XCVQ-QP. For this purpose, a query benchmark was tested. 

 
 

(15)  
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 Query Performance Test (QPT): This factor is used to determine 

the time required to process each of the XPath query in the 

benchmark and retrieve the relevant results.  

All the time comparison factors shown in the following figures are scaled 

by (log10) to make the figures clearer. All the negative values in these figures 

mean that the actual time values were less than (1). 

5.3 Data Preparation 

To test the XCVQ model, a set comprising of different types of XML 

documents has been chosen. These documents should have different sizes, 

number of elements, number of nodes, the depth of the longest path, and the data 

ratio (DR) which is calculated as follows (Sakr, 2009): 

 

  (16)  

 

Where  is the data ratio for the XML document (d), (D) is the data, and 

(Si) represents the size of the XML document. 

According to their main characteristics, XML documents can be categorized 

into three types (Maneth et al., 2008; Sakr, 2009): 

1. Textual documents (TD): The DRd of this type of documents exceeds 

70%. The structure of these documents is very simple. Books and articles 

are examples of this type. 

2. Structural documents (SD): In this type of XML documents, the DRd is 

less than 30%. Baseball box score and line-item shipping are two 

examples of this type.  

3. Regular documents (RD): These documents have DRd between 40% and 

60%. Relational databases are examples of this type. 
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 The complete descriptions of the XML corpus with all the required 

information and the detailed description of all the groups in the corpus are listed 

in Appendix-C.  

5.4 Testing Environment 

All the testing were carried out on a personal computer with Intel(R) 

Core(TM)2 Due CPU processor that has the speed of 5.50 GHz. The RAM 

memory of the tested environment is 4.00GB and 300GB of hard disk drive. It 

has 32-bit Windows Vista operating system. 

5.5 XCVQ-C and XCVQ-D Testing  

The testing technique for the XCVQ-C is made in two stages. The first stage 

is done by compressing only the structure of the XML document and creating 

the path-dictionary without compressing the data part of the document. The 

second stage is done by compressing the structure and the data parts to obtain 

the final XML compressed document which will be used in the querying 

process. 

5.5.1 XCVQ-C and XCVQ-D Testing: Stage-1 

The main purpose of this stage is to examine the effect of redundancy on 

the structure of the XML document and its overall size. In this stage, the data 

part of the document has not been compressed and thus keeps its original size, 

while the structure part is abridged and replaced with the elements index and the 

attribute name entries in the path-dictionary. The compressed XML document, 

at this stage, contains the path-dictionary and the created containers except that 

the data inside these containers are not compressed. 

This test includes finding the Structure Compression Ratio (SCR), 

specifying the Structure Compression Time (SCT) and its relationship to the size 
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of the XML document, as well as determining the Structure Decompression 

Time (SDT) and its relationship to the size of the XML document. 

 

Figure 5-2 explains the Structure Compression Ratio (SCR) for the XML 

corpus. By keeping the data in its original size and compressing only the 

structure part of each document, the resulted SCR is between 0.003 and 85.43 

and the average SCR is 49.47. The value of SCR depends on the structure ratio 

of each document, which is listed in appendix-D, and the repetition of the 

schema in this document. This test explains the role of the redundancy in the 

structure of the XML document. 

Figure 5-2: SCR for the XML corpus 
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Figure 5-3-(a) shows the relation between the size of the XML document (X) 

and the structure compression time (Y), while Figure 5-3-(b) illustrates the time 

(Y) required for decompressing the XML document and restoring the original 

one. It is clear from the above figures that the relationships between the two 

variables in both cases are expanding almost linearly. The correlation coefficient 

between X and Y was r = 0.886607 in the compression case and r = 0.996626 in 

the decompression case. These values indicate the strong positive relationship 

between the size of the XML document in the one hand and the compression and 

decompression time on the other. The actual SCR, SCT, and SDT for the 

complete XML corpus are listed in Appendix-D. 

 

 

 

-2

-1

0

1

2

3

4

0.
00

58
5

0.
02

53
9

0.
03

51
5

0.
09

27
7

0.
27

4

0.
59

8

1.
55

8

2.
52

6

3.
21

3

7.
52

9

15
.8

28

30
.7

99

81
.3

97

11
2.

76
1

13
1.

16
7

St
ru

ct
ur

e 
Co

m
pr

es
si

on
 ti

m
e/

 S
ec

 (l
og

 s
ca

le
)

XML document size/MB

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

58
5

0.
03

02
7

0.
06

73
8

0.
27

4

0.
63

2

2.
22

6

3.
21

3

10
.5

78

24
.6

22

81
.3

97

11
3.

06
1

St
ru

ct
ur

e 
D

ec
om

pr
es

si
on

 ti
m

e/
Se

c 
(lo

g 
sc

al
e)

XML Document Size/MB

Figure 5-3: (a) Structure Compression Time for the XML corpus and (b) Structure 
Decompression Time for the XML corpus. 

(a) (b) 



91 

5.5.2 XCVQ-C and XCVQ-D Testing: Stage-2 

In this testing stage, the fully designed XCVQ-C and XCVQ-D were 

tested.  The main aims of this test is to determine the average compression ratio 

for the XML corpus and the compression ratio for each of the documents, to 

specify the compression and decompression time and their relationship to the 

size of the XML document, and to generate the XML repository which is going 

to be used in the testing of XCVQ-QP. 

 

The compression ratio of the complete XML corpus is shown in Figure 5-4. The 

resulted compressed file contains the path-dictionary and the containers after 

compressing their data using Gzip back-end compressor. The minimum resulted 

compression ratio is 68.51 for Richard II and the maximum is 93.52 for 

Sweden-meta. The average compression ratio for the complete XML corpus is 

78.45. 

 

 

Figure 5-4: CR for the XML corpus 
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Figure 5-5-(a) shows the compression time for the complete XML corpus 

according to the size of the XML document while Figure 5-5-(b) shows the time 

required to decompress the XML documents. Again, the relationship between 

the compression/decompression time and the size of the XML document is 

almost linear and the correlation coefficient between the compression time and 

the XML document size is: r=0.971702, while it is r=0.888598 in the case of 

decompression. This illustrates the strong positive relation between the two 

tested variables. The complete tested files alongside with their CR, CT, and DT 

are listed in Appendix-D.  

5.6 XCVQ-C & XCVQ-D Evaluation 

For the purpose of evaluating XCVQ-C and XCVQ-D, comparisons were 

made between XCVQ and other competitive techniques. Depending on the 

availability of the techniques and the XML corpus used in the testing of these 

techniques, four queriable XML compressors were chosen for the purpose of 
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comparison: XGrind (Tolani and Haritsa, 2000), Xpress (Min et al., 2003), 

XQzip (Cheng and NG, 2004) , XQueC (Arion et al., 2007), and (Müldner et al., 

2009).  The XML corpus used in the testing and the compression ratio for each 

document is shown in Figure 5-6. The evaluation of the XCVQ includes 

comparing the following factors: CR, CT, and DT. 

 

 

 

 

 

It is clear that XCVQ-C achieved a better compression ratio than other 

compressors except when dealing with high structural documents, since 

XSAQCT achieved better ratio. But when dealing with querying the compressed 

XML document, XSAQCT has the ability to answer only exact match queries 

since it transfers the structure of the document into an annotated-tree which can 

be compressed better than structured-tree. The average CR of the XCVQ-C is 

considered to be the best between all the other techniques for the selected 

documents, as listed in Table 5-2. 

 

Table 5-2: Average CR for all the tested XML compressors. 

XML compressor Average CR 

XGrind 57.39 
XPress 57.55 

Figure 5-6: Evaluating XCVQ-C CR. 
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XQzip 66.95 
XQueC 68.4 

XSAQCT 80.02 
XCVQ 81.85 

 
 

 

 

As seen in Figure 5-7, the time required by the XCVQ-C to compress the 

XML document was higher than the other compressors in most cases. This is 

due to the SAX parser being used by XCVQ-C, which traverses the XML 

document only once, during which time the complete containers and the 

structured tree were constructed. While the time required to decompress and 

regenerate the XML document, shown in Figure 5-8, was better than some of the 

XML compressors. 

 

 

 

Figure 5-7: Evaluating XCVQ-C CT 
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5.7 XCVQ-QP Testing 

For the purpose of testing the performance of the XCVQ-QP, a XPath 

benchmark is used from XPathMark (Franceschet, 2005) since it covers all types 

of XML queries. The queries in this benchmark are divided into two main 

categories either Query Functional Test (QFT) or Query Performance Test 

(QPT).  

5.7.1 QFT 

XPath-FT queries are used to check the completeness and correctness of the 

query processor and are grouped into five aspects. Table 5-3 illustrates these five 

aspects. Since the main concern of XCVQ-QP is to process vague queries, only 

the vague cases in each of the aspects are tested. Since the third aspect could not 

be as vague, the testing process at this stage ignores this aspect. Furthermore, 

Figure 5-8: Evaluating XCVQ-D DT. 
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one additional aspect was added to the existing aspects (Multi-File aspect) to test 

the ability of XCVQ-QP to retrieve the required information even if it is 

disseminated in more than one XML document.  
 

Table 5-3: XPathMark-FT query benchmark 

QFT concepts Description 

Axes parent, descendant, preceding 

Filters  predicates 

Node Test Comment(), text(), node() 

Operators  Relational operators (<, =,…) and Boolean 

operators (and, or) 

Functions String manipulating functions and 

mathematical functions 

Multi-File Retrieving information from more than one 

XML document 

 

 

 

Table C-2 in Appendix-C lists all the QFT concepts alongside with the 

queries associated with each concept by applying the example XML document 

in Figure 4-3 as a case study. All the listed queries were successfully processed 

by XCVQ-QP and retrieve the required information. 

5.7.2 QPT 

The QPT queries test the exact time required to answer a specific query 

(Franceschet, 2005). For this purpose, the same concepts in Table 5-4 were used 

to test the performance of the XCVQ-QP by testing the time required to process 

the set of queries for each concept and retrieve the information from a specific 

XML document chosen from the used XML corpus with different sizes.  
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The testing results in Figure 5-9 includes all the concepts of the selected 

benchmark after averaging the time required to process the set of queries within 

each concept. These sets were applied to retrieve information from various XML 

documents with different sizes. It is clear from the aforementioned figure that 

the axes queries need less time to be processed than the other concepts. This is 

due to the structure of the compressed XML document which requires searching 

only the indexes of the containers to process these queries.  

Since the queries belonging to the Filter concepts required partial 

decompression only for the retrieved containers, this set of queries needs more 

time than the queries in the first set. Because the set of queries in the Operation 

concept needs partial decompression for the relevant containers plus filtering the 

values in the retrieved information according to the given operation, they need 

even more time to be processed. Finally, the set of queries containing function 

calls require processing either the synonym or similarity of the given parameter 

which needs the highest time among other concepts as these functions require 

searching the dictionary or other similar data respectively. 

Figure 5-9: Testing XCVQ-QP Querying time 
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Another test was made to check the performance of the queries in the last 

concept (multi-file). The test concludes that the time required to process a query 

from that set was dependent on several factors such as the size of the relevant 

documents, the number of relevant documents, and the size of the XML 

repository. It could thus be concluded that these entire factors have a positive 

relationship with the query processing time. 

5.8 XCVQ-QP Evaluation 

To evaluate XCVQ-QP, a test was first made to check the functionality of 

the model and its capability to process different kinds of queries. All the existing 

XML queriable compressors were tested to determine the types of queries each 

compressor can process. All the existing queriable compressors have the ability 

to process SQ, while some of them were designed to process specific types of 

queries. As discussed before, XCVQ-QP has the ability to process the vague 

queries plus all the other kinds of queries which renders it the only queriable 

XML compressor with such a feature. 

Another evaluation test was made to compare the time required to 

process a query and retrieve the relevant information accordingly. Since each of 

the previous XML compressors used a different set of queries and documents to 

test their querying time, several tests were made to compare XCVQ-QP with 

these compressors using their queries and XML document sets. 

The evaluation tests were made to compare the querying time with 

XGrind and Xpress, XQZip, and XSAQCT using the set of queries and the XML 

documents listed in Appendix-E (Set-1) (Min et al., 2003), (Set-2) (Yang et al., 

2006), and (Set-3) (Müldner et al., 2009) respectively.  
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As declared in Figure 5-10, the time required to process the queries using 

XCVQ-QP was less than the time required to process the same queries using 

almost all the previous XML queriable compressors, except for the queries that 

require data retrieval such as the queries in the filter concept. This is due to the 

fact that XCVQ-QP needs to decompress the relevant containers in order to 

retrieve the required information. The time of XCVQ-QP was even more than the 
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Figure 5-10: XCVQ Query processing time against (a) XGrind and Xpress, (b) 
XQZip, and (c) XSAQCT. 
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other compressors when retrieving information from the textual XML 

documents since the size of the containers in these documents were higher than 

other types of documents. 

The designed query processor is considered to be the first processor which 

has the ability to retrieve information according to all types of queries from the 

compressed XML documents. Comparing it with the techniques that retrieve 

information from the original XML documents, XCVQ-QP covers different sides 

of vague queries (path expansion, data value expansion, and function set 

expansion). On the other hand, the previous techniques are dedicated to solving 

only one side (path expansion as in (Grust, 2002; Amer-Yahia et al., 2004) and 

or two sides (path expansion and function expansion as in (Campi et al., 2009) 

or path expansion and data value expansion as in (Brisaboa et al., 2010).  

5.9 Chapter Summary 

In this chapter, extensive tests were carried out to check the performance 

and functional abilities of XCVQ. In the compressor part of the model, the model 

was tested using a corpus of XML documents that have different features. After 

comparing the compression ratio with other XML compressors, XCVQ showed 

better ratios in most of the tested documents and its average ratio was higher 

than all other tested techniques. On the other hand, the compression time was 

high and needs further development in the future. An independent test was also 

made to test the compression ratio of XCVQ-C and the results of the tested data 

are listed in Appendix-F. 

From the decompression side, XCVQ-D was fast enough compared to the 

existing techniques and the decompressed documents were lossy when there 

were dummy elements in the XML document. The ratio of the dummy elements 

and that of the structure loss are listed in Appendix-G. 

Finally, XCVQ-QP was tested to check for its ability to retrieve 

information according to several kinds of vague queries and other kinds of 

queries. A benchmark of queries was chosen and tested for the functional and 
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the performance abilities of the designed model. The results were very 

encouraging, since the model proved its ability to process different kinds of 

queries in a competitive processing time.   
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CHAPTER 6  Conclusions and future work 
This thesis introduced a new model which has the ability to compress an 

XML document efficiently and retrieve information from the compressed file 

according to vague queries and even various other types of queries. This chapter 

will outline the main conclusions of the research as well as the main advantages 

and limitations of the designed model. Finally, the chapter will also list possible 

future trends in this research in terms of developing the proposed model. 

6.1 Conclusion 

As the importance of XML usage for storing and transferring data via the 

World Wide Web becomes increasingly clear, there is a corresponding need to 

compress the size of XML documents, dealing with them in their compressed 

mode so as to make them accessible to devices with limited resources. When 

these compressed documents are used by simple users, in a situation where there 

is absence of schema, or if such a user has no exact idea of what s/he is looking 

for, there should be a special technique available to adequately deal with these 

types of queries.  The questions had been raised by this research and their 

answers are as follows:  

 

1. Is it possible to design a new compression technique that has the 

ability to compress the XML documents and achieve better 

compression ratio without the need to the document’s Schema or 

its DTD? 

 

The answer to this question is XCVQ compressor. The design of 

the model showed the best average compression ratio (78.45) 

among the other XML queriable compressors without the need to 

the XML schema to be available. This was due to several reasons, 

such as: (1) limiting the storage of each element and attribute 

name in the document to only one number, which represents the 
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order of that element or attribute in the XML document, instead 

of being two numbers, and (2) increase the granularity of the data 

to be compressed in order to perform better compression ratio. 

Although this design issue increased the compression ratio, but it 

affects the time required to compress the document by increasing 

this time to be higher than the time require to compress these 

documents using other techniques. However, the compression 

process usually made only once, while the querying process can 

be done hundreds of times to retrieve information from the 

compressed files. 

 

2. What is the influence of the structure redundancy on the overall 

size of the XML document? 

 

To answer this question, XCVQ Structure Compressor was 

designed. In the compression process of the XML documents, the 

research found the strong affect of the redundancy in the structure 

of the document on its overall size. By succinctly storing the 

structure part of the XML document and keeping the data part as 

it is, the experiments showed good compression ratios which were 

up to 85.43 and averaged 49.47 for the tested XML corpus.  This 

shows the big redundancy in the structure part of the document, 

apart which is considered to be very important for several 

purposes and retrieving information is one of them. 

 

3. What are the main types of vague queries and when they can be 

occur? Have the existing XPath query language the ability to 

answer vague queries? If no, what is the required expansion that 

should be made on XPath to give it this ability? 

 

Vague queries are one of the important types of queries. They 

occur in different situations and require special ways to be 

processed since the existing query languages do not have the 

ability to answer these queries. The XCVQ-QP can deal with 
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simple and complex queries by forcing each query to pass by two 

decomposition stages in order to make it easier to retrieve 

information from the relevant document(s) and then combine the 

sub-results to be decompressed and submitted to the user. This 

process required the expansion of XPath query language in 

different sides: the path expansion, the data value expansion, and 

the set of functions expansion. The time required to process the 

queries are very competitive especially when dealing with 

structure-based queries, since the compressed structure of the 

document helps in accelerating the retrieving process. 

 

4. How to determine the relevant XML document(s) from thousands 

of documents without the need to scan them completely for time 

saving purposes? And is it possible to retrieve information from 

more than one XML document without the pre-specification of 

these documents using one XPath query? 

 

Instead of scanning the complete document to search for a 

specific bit of data, XCVQ-QP uses the path-dictionary, which 

contains all the elements and attributes names, to specify the 

relevant documents from thousand of XML documents. In this 

way, it is now possible to retrieve information from unspecified 

document(s). While all the existing XML query processors 

required the user to pre-specify the required documents to retrieve 

information from them, XCVQ-QP has the ability to retrieve 

information from one or more than one XML document without 

the need to specify exactly which document could contain the 

required information.  

6.2 Recommendations 

 The main purpose of designing XCVQ is to process vague queries 

on compressed XML documents. For that reason, the first 
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recommendation for the model is to be used in cases where vague 

queries could be submitted, such as when dealing with naive 

users, where there is absence of schema, and when the required 

information is scattered among many files. 

 The model is recommended to be used in retrieving information 

from XML documents when these documents have to be stored in 

devices with limited resources. The required documents can be 

compressed once and then queried several times with very limited 

resources requirements. 

6.3 Future Work 

Several research issues can be explored to improve the model: 

 The model in this research can be developed to convert XCVQ into a 

complete XML management system with the ability to manage XML 

document in its compressed stage. The management process includes 

adding, deleting, or editing elements or attributes names. This 

process does not require any decompression, since the change is only 

made to the structure part of the document. The management process 

can include editing in this part of the document. In this case, only the 

container(s) with the required data should be decompressed using the 

Gzip back-end decompressor. They could also be used for editing 

the data and re-compressing the container(s). 

 

 Another development is providing the ability to retrieve information 

from XML documents written in languages other than English. This 

could be done by adding a translator to translate any data part into 

other languages and retrieve the information accordingly. 

 

 The model can be enriched by adding a Natural Language Processor 

that can convert a user’s query into a vague XPath query and then 
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retrieve the required information from the compressed XML 

document. 

 
 Remains to be fully implemented is the complete set of XPath 

statements such as “for” and “if”. 
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Appendix-A: XPath’s EBNF 

The complete EBNF of the XPath query language is listed in this appendix. This 

form had been used in XCVQ to check the correctness of the syntax of the 

submitted query. 
 

 

[1]    XPath    ::=    Expr 

[2]    Expr    ::=    ExprSingle ("," ExprSingle)* 

[3]    ExprSingle    ::=    ForExpr 
| QuantifiedExpr 
| IfExpr 
| OrExpr 

[4]    ForExpr    ::=    SimpleForClause "return" ExprSingle 

[5]    SimpleForClause    ::=    "for" "$" VarName "in" ExprSingle ("," "$" VarName "in" 
ExprSingle)* 

[6]    QuantifiedExpr    ::=    ("some" | "every") "$" VarName "in" ExprSingle ("," "$" 
VarName "in" ExprSingle)* "satisfies" ExprSingle 

[7]    IfExpr    ::=    "if" "(" Expr ")" "then" ExprSingle "else" ExprSingle 

[8]    OrExpr    ::=    AndExpr ( "or" AndExpr )* 

[9]    AndExpr    ::=    ComparisonExpr ( "and" ComparisonExpr )* 

[10]    ComparisonExpr    ::=    RangeExpr ( (ValueComp 
| GeneralComp 
| NodeComp) RangeExpr )? 

[11]    RangeExpr    ::=    AdditiveExpr ( "to" AdditiveExpr )? 

[12]    AdditiveExpr    ::=    MultiplicativeExpr ( ("+" | "-") MultiplicativeExpr )* 

[13]    MultiplicativeExpr    ::=    UnionExpr ( ("*" | "div" | "idiv" | "mod") UnionExpr )* 

[14]    UnionExpr    ::=    IntersectExceptExpr ( ("union" | "|") IntersectExceptExpr )* 

[15]    IntersectExceptExpr    ::=    InstanceofExpr ( ("intersect" | "except") InstanceofExpr )* 

[16]    InstanceofExpr    ::=    TreatExpr ( "instance" "of" SequenceType )? 

[17]    TreatExpr    ::=    CastableExpr ( "treat" "as" SequenceType )? 

[18]    CastableExpr    ::=    CastExpr ( "castable" "as" SingleType )? 

[19]    CastExpr    ::=    UnaryExpr ( "cast" "as" SingleType )? 

[20]    UnaryExpr    ::=    ("-" | "+")* ValueExpr 

[21]    ValueExpr    ::=    PathExpr 

[22]    GeneralComp    ::=    "=" | "!=" | "<" | "<=" | ">" | ">=" 

[23]    ValueComp    ::=    "eq" | "ne" | "lt" | "le" | "gt" | "ge" 

[24]    NodeComp    ::=    "is" | "<<" | ">>" 

[25]    PathExpr    ::=    ("/" RelativePathExpr?) 
| ("//" RelativePathExpr) 
| RelativePathExpr 

 

[26]    RelativePathExpr    ::=    StepExpr (("/" | "//") StepExpr)*  

[27]    StepExpr    ::=    FilterExpr | AxisStep  

[28]    AxisStep    ::=    (ReverseStep | ForwardStep) PredicateList  

[29]    ForwardStep    ::=    (ForwardAxis NodeTest) | AbbrevForwardStep  
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[30]    ForwardAxis    ::=    ("child" "::") 
| ("descendant" "::") 
| ("attribute" "::") 
| ("self" "::") 
| ("descendant-or-self" "::") 
| ("following-sibling" "::") 
| ("following" "::") 
| ("namespace" "::") 

 

[31]    AbbrevForwardStep    ::=    "@"? NodeTest  

[32]    ReverseStep    ::=    (ReverseAxis NodeTest) | AbbrevReverseStep  

[33]    ReverseAxis    ::=    ("parent" "::") 
| ("ancestor" "::") 
| ("preceding-sibling" "::") 
| ("preceding" "::") 
| ("ancestor-or-self" "::") 

 

[34]    AbbrevReverseStep    ::=    ".."  

[35]    NodeTest    ::=    KindTest | NameTest  

[36]    NameTest    ::=    QName | Wildcard  

[37]    Wildcard    ::=    "*" 
| (NCName ":" "*") 
| ("*" ":" NCName) 

 

[38]    FilterExpr    ::=    PrimaryExpr PredicateList  

[39]    PredicateList    ::=    Predicate*  

[40]    Predicate    ::=    "[" Expr "]"  

[41]    PrimaryExpr    ::=    Literal | VarRef | ParenthesizedExpr | ContextItemExpr | 
FunctionCall | FunctionCallList 
FunctionCallList ::= "synonyms" " ("  StrinLiteral ")" 
| "similar("  StrinLiteral ")" 
| "avg("  pathExpr ")" 
| "median" " (" pathExpr ")" 
| "between" " (" IntegerLiteral  
             | DecimalLiteral  
             | DoubleLiteral "," IntegerLiteral  
             | DecimalLiteral  
             | DoubleLiteral ")" 
 

 

[42]    Literal    ::=    NumericLiteral | StringLiteral  

[43]    NumericLiteral    ::=    IntegerLiteral | DecimalLiteral | DoubleLiteral  

[44]    VarRef    ::=    "$" VarName  

[45]    VarName    ::=    QName 

 

[46]    ParenthesizedExpr    ::=    "(" Expr? ")"  

[47]    ContextItemExpr    ::=    "."  

[48]    FunctionCall    ::=    QName "(" (ExprSingle ("," ExprSingle)*)? ")"  

     [49]    SingleType    ::=    AtomicType "?"?  

[50]    SequenceType    ::=    ("empty-sequence" "(" ")") 
| (ItemType OccurrenceIndicator?) 

 

[51]    OccurrenceIndicator    ::=    "?" | "*" | "+"  

[52]    ItemType    ::=    KindTest | ("item" "(" ")") | AtomicType  

[53]    AtomicType    ::=    QName 

 

[54]    KindTest    ::=    DocumentTest  
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| ElementTest 
| AttributeTest 
| SchemaElementTest 
| SchemaAttributeTest 
| PITest 
| CommentTest 
| TextTest 
| AnyKindTest 

[55]    AnyKindTest    ::=    "node" "(" ")"  

[56]    DocumentTest    ::=    "document-node" "(" (ElementTest | SchemaElementTest)? ")"  

[57]    TextTest    ::=    "text" "(" ")"  

[58]    CommentTest    ::=    "comment" "(" ")"  

[59]    PITest    ::=    "processing-instruction" "(" (NCName | StringLiteral)? ")"  

[60]    AttributeTest    ::=    "attribute" "(" (AttribNameOrWildcard ("," TypeName)?)? ")"  

[61]    AttribNameOrWildcard    ::=    AttributeName | "*"  

[62]    SchemaAttributeTest    ::=    "schema-attribute" "(" AttributeDeclaration ")"  

[63]    AttributeDeclaration    ::=    AttributeName 

 

[64]    ElementTest    ::=    "element" "(" (ElementNameOrWildcard ("," TypeName 
"?"?)?)? ")" 

 

[65]    ElementNameOrWildcard    ::=    ElementName | "*"  

[66]    SchemaElementTest    ::=    "schema-element" "(" ElementDeclaration ")"  

[67]    ElementDeclaration    ::=    ElementName 

 

[68]    AttributeName    ::=    QName 

 

[69]    ElementName    ::=    QName 

 

[70]    TypeName    ::=    QName 

 

[71]    IntegerLiteral    ::=    Digits 

[72]    DecimalLiteral    ::=    ("." Digits) | (Digits "." [0-9]*)  

[73]    DoubleLiteral    ::=    (("." Digits) | (Digits ("." [0-9]*)?)) [eE] [+-]? Digits  

[74]    StringLiteral    ::=    ('"' (EscapeQuot | [^"])* '"') | ("'" (EscapeApos | [^'])* "'")  

[75]    EscapeQuot    ::=    '""'  

[76]    EscapeApos    ::=    "''"  

[77]    Comment    ::=    "(:" (CommentContents | Comment)* ":)"  

[78]    QName    ::=    [http://www.w3.org/TR/REC-xml-names/#NT-QName]Names  

[79]    NCName    ::=    [http://www.w3.org/TR/REC-xml-names/#NT-NCName]Names  

[80]    Char    ::=    [http://www.w3.org/TR/REC-xml#NT-Char]XML  

[81]    Digits    ::=    [0-9]+ 

[82]    CommentContents    ::=    (Char+ - (Char* ('(:' | ':)') Char*)) 
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Appendix-B: Implementing XCVQ 

The implementation of XCVQ is done using Eclipse environment for java 

programming language. The GUI for the system uses the (visualswing4eclipse) 

plug-in to makes the design more powerful, friendly, and easy to use. The main 

window of the system is shown in Figure B-1. Using this GUI the user can 

compress, decompress and querying XML documents. 
 

 

 

This section illustrates the implementation part of XCVQ compressor, 

decompressor, and the vague query processor. 

1. Implementation of  XCVQ-C 

According to all the advantages of using SAX parser mentioned in section 

2.2.2 to parse the given XML document, SAX parser (from Eclipse 

environment for java programming language) is used to scan the XML 

document. This type of parsing scans the document only once by detecting 

several events from that document. During each event XCVQ-C collects 

information from the document in order to use it in the compression process. 

The events and the work through each one are listed below and illustrated in 

the class diagram in Figure B-2:  
 

 

 

Figure B-1: The main screen of XCVQ 
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4. (StartDocument): this event is cached only once by SAX when it detects the 

first tag of the document. In this stage XCVQ-C only initializes the used 

variables and prepares the used data structures and the output file to 

receive the data. Furthermore it specifies the name space used in that 

document and save it for further processes. 
 

5. (startElement): this event is coached by SAX each time it detects an open 

tag. It holds the name of the element (qName) and the list of attribute 

names and values associated with this element (if any). In this stage, 

XCVQ-C performs the algorithm in Figure 4-6. 

 

 

Figure B-2: XCVQ-C Class Diagram 



122 

 

 

6. (chracters): this event occurs when a data value appeared in the XML 

document. SAX could process this event more than once to deal with the 

same data. The data value is accumulated and added to the list of data in 

a leaf node in its appropriate path as illustrated in Figure B-4. 
 

7. (endElement): SAX processes this event when it catches the end of an 

element, a case means that there is a piece of data ready to be inserted in 

a leaf node of the structured-tree (if that element holds data). The suitable 

path can be known from the contents of the pathStack as described in 

Figure 4-7.  

 

8. (endDocument): this event is processed only once by SAX when it 

catches the very end of the XML document. In this stage the containers 

first are created from the structured-tree as illustrated in Figure 4-5. Each 

container has an index which represents the path from the root to the leaf 

for the data contained in this container.  Secondly, the contents of each 

container are compressed using one of the back-end general purposes 

compression techniques either Gzip or LZW. The complete algorithm for 

LZW compressor is shown in Figure B-7.  
 

7. Algorithm characters(chaArray ch[]) 

8.     data+=ch[]; 

9.     ignoreWhiteSpaces(data)  

10. End. 

Figure B-4: (character) algorithm 



123 

 

 

 

The LZW algorithm starts with filling the first 256 positions in the 

dictionary with the 256 printable characters (line 3). The scanning 

process for the input string starts character by character in an 

attempt to look for the maximum sequence of characters belongs to 

the dictionary and add the index of this sequence to the output file 

(Salomon, 2007). Otherwise, if this sequence has not been added to 

the dictionary yet, the algorithm adds it to the end of the dictionary. 

For the Gzip compressor, XCVQ-C uses the java (java.util.zip) 

package in order to compress the required data. This package has 

several classes and one of them is (GZIPOutputStream) class 

26. Algorithm LZW(String input) 

27.    input={c1, c2, …cn} 

28.    let dictionary={all the 256 printable characters} 

29.    lookUpString=c1 

30.    for all ci  input: i=2, 3, …n 

31.       lookUpString=lookUpString+ ci 

32.       if (lookUpString)  dictionary 

33.          add(lookUpString)to the end of dictionary 

34.          output the position of lookUpString+ci in  

         dictionary 

35.          lookUpString= ci+1 

36.       else  

37.          lookUpString=lookUpString+ ci+1 

38.          While (lookUpString + ci+1  dictionary) 

39.             i++ 

40.             lookUpString=lookUpString+ ci 

41.          Output the position of lookUpString in  

         dictionary 

               

    

 

Figure B-7 :(LZW) algorithm 
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which consists of more than one constructor, each of which is used 

to convert the input stream into a zip file.   

 

After implementing the compressor algorithm, some information about the 

compressed file is appeared to the user, as shown in Figure B-8, including the 

compression ratio. The new compressed file is saved with the same name and in 

the same path as the original XML document with (.zip) extension. 

 

 

2. XCVQ-D Implementation 

The implementation of the XCVQ-D depends restore the compressed XML 

document into the same containers used in the compression stage as illustrated in 

Figure B-9. Before applying the decompression algorithm in Figure 4-6, XCVQ-D 

decompresses the container’s contents using GZip decompression technique and 

then uses these containers alongside with the pathDictionary to reproduce the 

XML document.  
 

Figure B-8: GUI for compression results. 



125 

 

 

 

 

 The new decompressed XML document is saved in the same path as the 

compressed XML document, carrying its name followed by (_1.xml) to 

differentiate it from the original XML document.  

3. XCVQ-QP Implementation 

The implementation of XCVQ-QP passes through several stages. Each stage 

has specific roles and certain classes which are illustrated in Figure B-10.  
 

 

Figure B-9: (XCVQ-D) class diagram 
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The main steps of each stage and the detailed roles are listed in the 

following sections. 

a. XPath’s EBNF expansion 

When the user writes a vague query using the GUI in Figure B-11, this syntax 

of this query is checked against the XPath Extended Backus-Naur Form (EBNF) 

(W3C, 2007a) which specifies the grammar of XPath language.  The complete 

EBNF for XPath query language can be seen in Appendix-A. 

Figure B-10: XCVQ-QP class diagram 
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Since ZXCQ-QP performs expansion on XPath grammars to provide it the 

capability of accept vague conditions, an expansion process is performed on the 

XPath EBNF. This expansion includes: 
 

 PrimaryExpr    ::=    Literal | VarRef | ParenthesizedExpr 
| ContextItemExpr | FunctionCall | 
FunctionCallList 

FunctionCallList ::= “synonyms” “(“  StrinLiteral “)” 

                 | “similar(“  StrinLiteral “)” 

  | “avg(“  pathExpr “)” 

  | “median” “(“ pathExpr “)” 

  | “between” “(“ IntegerLiteral  

            | DecimalLiteral  

     | DoubleLiteral “,” IntegerLiteral  

                  | DecimalLiteral  

                                 | DoubleLiteral “)” 

 

 

Figure B-11: GUI for XCVQ-QP 
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Using Java Compiler-Compiler (JavaCC), the expanded EBNF for XPath is 

converted into executable java source code to makes it possible to follow the 

instructions of the EBNF and checks the syntax and lexical errors in the user’s 

query. If the query does not meet the XPath grammar, an error message appears 

to the user determining the exact place of the error within the query. 

The syntactically correct query is converted into a tree structure depending 

on the semantic of the XPath query. As an example, Figure B-12- (a) shows a 

query and (b) shows its semantic tree. The semantic tree for each query 

determines the type of each part of that query. In this example the query is 

divided into two main branches since it has the (AndExpr and), each branch is a 

(PathExpr). The first branch holds the (CATALOG, CD, and TITLE) QNames, 

while the second branch holds (CATALOG, CD, and Year) QNames with the 

(IntegerLiteral) accompanied the (YEAR) element. 

The tree structure of the given query is used by XCVQ-QP to determine the 

type of each QName and to build the required data structure in order to process 

the query as discussed in the next section. 
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b. Storing the Query 

XCVQ-QP uses a pre-designed data structure named (qInfo) in order to store 

all the required information from the query. This structure has the following 

fields: 

 

Figure B-12: An XPath query (a) and its semantic tree (b) 

 /CATALOG/CD/TITLE and /CATALOG/CD[YEAR > 1990] 

(a) 

XPath2 
    XPath 
       Expr 
          AndExpr  and 
             PathExpr 
                Slash  / 
                StepExpr 
                   AbbrevForwardStep 
                      NodeTest 
                         NameTest 
                            QName  CATALOG 
                StepExpr 
                   AbbrevForwardStep 
                      NodeTest 
                         NameTest 
                            QName  CD 
                StepExpr 
                   AbbrevForwardStep 
                      NodeTest 
                         NameTest 
                            QName  TITLE 
             PathExpr 
                Slash  / 
                StepExpr 
                   AbbrevForwardStep 
                      NodeTest 
                         NameTest 
                            QName  CATALOG 
                StepExpr 
                   AbbrevForwardStep 
                      NodeTest 
                         NameTest 
                            QName  CD 
                   PredicateList 
                      Predicate 
                         Expr 
                            ComparisonExpr  > 
                               StepExpr 
                                  AbbrevForwardStep 
                                     NodeTest 
                                        NameTest 
                                           QName  YEAR 
                               IntegerLiteral  1990 

(b) 
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 Table B-1: The set of types provided by XCVQ-QP to qName 

predicateLiteral predicateString comparisonLiteral comparisonString 

comparisonPath functionName andExpr orExpr 

ifVariable forVariable ifExpr forExpr 

pathExpr  

 

 

9. Name: this field stores all the QNames appear in the query. 

10. Attribute: it is a Boolean field which is true if the QName is an attribute 

and is false otherwise. 

11. Type:  in this field the type of each QName is stored. XCVQ-QP provides 

each QName a specific type according to its position and role in the 

query. The set of provided types is shown in Table B-1. These types cover 

all the kinds of XPath query that can be processed by XCVQ-QP.  

12. Value: if there is a literal or a string value in the query, then it is 

associated with the proper qName.  
 

 

Table B-2: the qInfo structure for the query in Figure B-13 

Name Attribute Type Value Operation FunctionCall 
CATALOG False andExpr    

CD False pathExpr    
TITLE False pathExpr    
CATALOG False andExpr    

CD False predicateLiteral    
YEAR False comparisonLiteral 1990 >  

 

 

 

 

13. Operation: this field stores the arithmetical and logical operations in the 

query. 

14. FunctionCall: stores the list of parameters for the function if there is one 

in the query. 
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Table B-2 illustrates the qInfo structure for the query example in Figure B-12. 

 

c. Query decomposition: Stage-1 

After collecting the important information from the query and store them in 

(qInfo) structure, the algorithm in Figure B-13 is processed. This algorithm starts 

by collecting the relevant documents from the compressed XML repository. 

During this process each compressed document is scanned for one of the Name 

field in the qInfo structure, if it contains one of them in its path-dictionary, then 

this file is candidate to be one of the relevant documents. If (n) relevant 

document encountered, only the path-dictionary for these documents are loaded 

into the memory and the original qInfo structure is decomposed into (n) 

44. Algorithm processXPathQuery(structure qInfo) 

45. let qInfo= [a1, a2, …, an] such that: 

46. let fileDB=[f1, f2, …, fm] 

47. let relevant=[r1, r2, …, rk] 

48. for all ai.Name  qInfo 

49.   for all fj  fileDB 

50.      if ai.Name  fj.pathDictionary 

51.         relevant.pathDictionary  fj 

52.         relevant.query  ai 

53. for all ri  relevant 

54.     subQuery= Decpmpose(ri.query) 

55.     cost=relax(ri.subQuery) 

56.     if cost>threshold 

57.        remove (ri) from relevant 

58.     tree=retrieveData 

59. allTrees=Combine all the retrieved trees 

  

   

 

Figure B-13: Processing an XPath query algorithm. 
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structures each of which is associated with its relevant document (lines 5-9). 

This process decomposes the XPath query into several sub-queries according to 

their relevancy to a specific document.  

d. Query Decomposition: Stage-2 

After completing the first stage decomposition, the second stage of the 

decomposition is started by applying the decomposition function in Figure B-14 

on each sub-query to produce a new set of sub-queries (line11 in Figure B-13). 

This function determines the relevant containers from the compressed file. This 

is done through checking if any Name field of the given sub-query is contained 

within the index of that container. In this case the relevant container is uploaded 

into the memory alongside with its relevant part from the sub-query.   

 
 

 

 

 

 

For all the new sub-queries, each one is relaxed against the index of its 

relevant container, (line 12). This relaxation is done by performing a matching 

process between the sub-query and the index of its relevant container. This 

process performs changes on the original sub-query in order to fit it with the 

index by adding, removing, renaming, or reordering position in the nodes of the 

query. After each change, the cost of that change is computed and the total cost 

of relaxation is checked against a pre-defined threshold to determine if this 

1. Function decompose (query Q) 

2. let Containers=[c1, c2, …, cn]  

3. For all ci 

4.    If Q.namej  ci.index 

5.       newSub-queries  Q.namej 

6.       newSub-query  ci 

7.    } 

8. End. 
  

Figure B-14: Query decomposition function 
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query should be removed from the list of relevant queries if it has high cost 

(lines 13-14).    

 

e. Retrieving and combining results 

At this stage, (line 17), each container accompanied with its sub-query is on 

the memory ready to be retrieved. The retrieving process taking into 

consideration the type of each qName and its operation and retrieve only the 

required information. If the query required retrieving information from the data 

set attached in the container, decompression process is performed only on this 

single container in order to retrieve the required data. The example query in 

Figure B-12 has a predicate requiring the values of the (YEAR) data to be greater 

than (1990) which requires the performance of the decompression only on one 

container that has the data and filter these data to retrieve only the data that meet 

the condition. 

Until this stage no decompression required when the query is structured 

based one. After combining all the retrieved sub-documents, each one is 

decompressed, using the same decompression algorithm in Figure 4-6, and 

combined under one XML document to form single tree instead of a forest.  

The resulted document can be compressed again if the user needs to 

make further querying on it. 
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Appendix-C: XML Corpus & XPath Benchmark 

This appendix contains the XML corpus that were used in the testing 

process (Table C-1), the description of its groups, and the complete XPath 

benchmark that were used in the testing process (Table C-2). 

 

Table C-1: XML Corpus 

Group  XML file  name File Size/MB %SR Tag no 
Element 

no 

Attributes 

no 

Max 

depth 

1 

321gone 

Ebay 

Ubid  

Yahoo_Shopping 

Homeseekers 

Nky  

Texas  

Yahoo_Homes  

XMark-1 

XMark-2 

(Schmidt et al., 2002; 

Washington, 2002) 

2.441E-2 

3.515E-2 

2.050E-2 

2.539E-2 

2.603 

3.213 

3.177 

0.419 

11.325 

113.061 

 

38.06 

11.14 

42.63 

34.1 

58.12 

70.43 

58.7 

56.77 

30.16 

30.03 

 

311 

156 

342 

342 

59322 

112051 

84577 

11038 

520546 

5167121 

32 

32 

32 

32 

35 

50 

54 

33 

74 

74 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

6 

6 

6 

6 

5 

5  

5 

3 

12 

12 

2 Baseball  

(Washington, 2002) 

0.632 92.95 

 

28306 46 0 6 

3 

Berkeley  

Cornell 

Michigan 

Texas   

Washington  

Read  

Uwm  

Wsu 

(Washington, 2002) 

9.277E-2 

3.027E-2 

6.738E-2 

3.222E-2 

5.175E-2 

0.283 

2.226 

1.558 

32.96 

45.64 

46.68 

44.88 

33.28 

63.22 

58.41 

73.99 

 

1143 

833 

1899 

859 

1025 

10546 

66729 

74557 

15 

15 

15 

15 

15 

16 

16 

16 

 

0 

0 

0 

0 

0 

0 

6 

0 

6 

6 

6 

6 

6 

5 

6 

5 

4 CD-Catalog 0.598 63.68 

 

183 8 0 3 

5 DBLP  

(Washington, 2002) 

131.167 45.1 

 

4718588 32 3 5 

6 

EnWikiNews 

EnWikiQuote 

EnWikiVersity 

EnWikTionary 

(Wikipedia, 2001) 

69.421 

124.532 

81.397 

556.612 

10.13 

3.69 

10.64 

26.26 

 

2103778 

2672870 

3333622 

28656178 

20 

20 

20 

20 

4 

4 

4 

4 

6 

6 

6 

6 
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7 

EXI-Array 

EXI-factbook 

EXI-GeogCoord 

EXI-Invoice 

EXI-weblog 

(EXI, 2009) 

22.062 

4.042 

15.828 

0.934 

2.526 

43.7 

47.47 

0.003 

65.41 

72.49 

 

226523 

55453 

17 

15075 

93435 

47 

199 

30 

52 

12 

0 

0 

0 

28 

0 

14 

8 

11 

9 

3 

8 
GB-meta 

Sweden-meta 

Turkey-meta  

(European, 2003) 

48.82 

3.35 

5.85E-3 

71.32 

71.14 

73.66 

 

886419 

60614 

100 

97 

101 

48 

18 

17 

2 

13 

12 

8 

9 

Henry IV, Part I 

Richard II  

j_caesar 

Shakespeare 

(plays, 2000) 

0.274 

0.251 

0.181 

7.529 

34.21 

32.48 

37.95 

36.56 

 

4334 

4116 

4455 

179690 

14 

16 

16 

22 

0 

0 

0 

0 

7 

8 

8 

9 

10 

LineItem  

XBench-DCSD-Normal 

XBench-DCSD-Small 

(Washington, 2002; 

Waterloo, 2003) 

30.799 

105.368 

10.578 

 

83.47 

57.24 

57.3 

 

1022976 

2242699 

2259292 

18 

50 

50 

0 

0 

0 

3 

10 

10 

11 Mondial 

(Washington, 2002) 

1.778 48.74 22423 23 

 

45 8 

12 NASA  

(Washington, 2002) 

24.622 37.13 476646 61 0 11 

13 SwissPort  

(Washington, 2002) 

112.761 

 

56.5 13917441 85 0 5 

14 Tree Bank 

(Washington, 2002) 

85.416 31.65 10795711 250 0 36 

 

The selected XML documents in the corpus were organized into many 

groups according to their origins and the purpose of their use, as follows: 

Group-1: It consists of many XML documents that are used in online 

shopping processes through different e-shopping and auction web sites. These 

documents are converted from database systems and they contain many empty 

elements with neither data nor sub-elements inside them. 

Group-2: the XML document in this group provides a complete 

description to all the teams including all the details about their players who 

participated in 1998 national league.  

Group-3: This group contains XML documents from different academic 

department. Some of the documents describe simple CVs for the academic staff 
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in these departments and the courses they teach. The other documents describe 

the detailed information for the courses submitted by some academic 

departments in different universities. 

Group-4:  The Document in this group gives details about many songs 

CDs such as their name, publication year, and their country. 

Group-5: This group has only one document that illustrates different 

papers published in proceeding of conferences and journals in the field of 

computer science. 

Group-6: different backup documents from Wikipedia web site are 

collected in this group. 

Group-7: This group contains sample documents from a collection of 

documents collected by the Efficient XML Interchange (EXI) working group 

which is part of the W3C. These documents contain the needed information in 

data exchanging. 

Group-8: The XML documents that describe the detailed climate 

changes in different countries around the world are listed in this group. 

Group-9: This group has some of Shakespeare’s plays which considered 

being (TD) document type. 

Group-10: This document contains a huge amount of shipping 

information for online shopping for different items taken from Google web site. 

Group-11: The XML document in this group contains lots of statistical 

information about many countries around the world such as their population, 

area, available natural resources, etc. 

Group-12: This document is transferred from NASA database which 

includes summarization of some of the NASA projects converted from text file. 

Group-13: The complete description of the DNA sequence is described 

in the XML document in this group. 
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Group-14: This document contains many parsed and encrypted English 

sentences taken from the Wall Street Journal. 

Table C-2: XPath Query Benchmark 

QFT 

Concept 

Query 

Name 
Query Description 

Axes 

Q1 /catalog/cd   normal path (exact 
matching) 

Q2 /catalog/title/cd Path out of order 

Q3 /cd/year/catalog Does not start from the root 

Q4 /catalog/title a gap exists , the actual 
path is (/catalog/cd/title) 

Q5 /catalog/yeer  miss spelling in the element 
name 

Q6 /cd/cateloge/yeer miss spelling in more than 
one element name 

Q7 /catalog/cd/year/title Sibling elements(year, title) 

Filters 

Q8 /catalog/cd/year[5]  Normal partial match 
(position filter) 

Q9 /catalog/cd/year["1990"] Normal partial match (value 
filter) 

Q10 /cd/catalog/country["uk"] Out of order path + 
predicate 

Q11 /cd/title/year/country[8] Siblings + predicate 

Q12 cataloge/yeer/cuntry["USA"] Spelling errors + predicate 

Operators 

Q13 /catalog/cd[year lt 2000] Normal predicate with 
comparative operator 

Q14 /cd/title/artist[year ge 1990] Sibling + comparative 
operator  

Q15 /cd/title[year lt 1990][country 
eq "uk"] 

More than one comparative 
operator 

Q16 /cd/title/country["uk"][yeer le 
1990] 

Predicate + comparative 
operator 

Q17 /cd/title/year eq 1990 comparative operator 
without predicate 

Q18 
/cd/year=2000 Relational operator (the 

result is either True or 
False) 

Q19 cd/title/yeer !=1998 Siblings + miss spelling + 
operation 

Q20 /cd[year gt 1990] and 
/cd[country eq "uk"] 

(and) operator 

Functions 

Q21 /cd/title/synonyms("date") Find the synonyms of an 
element name 

Q22 
cd/country eq 

synonyms("Britain") 
Find the synonym of a data 
value 

Q23 /cd/title/similar(artest) Find the similar element 
name 
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Q24 /cd/similar(artest)/title Find the similar element 
name 

Q25 
/cd/year/title eq similar("keep 

your heart") 

Find the similar data value 

Q26 /cd/artist/count(title) Find the number of 
occurrences of an element 

Multi-File 

Q27 /cd/book/year/title Exact match 

Q28 /cd/book/title/artist/author/year Siblings 

Q29 book/title/cd/yeer/aother Miss spelling 

Q30 /cd/book/title/year[“1990”] Data value predicate 

Q31 
book/title/year[4] and 

/cd/title/year 

Order predicate 

Q32 /cd/book[year lt 1990][country 
eq "uk"] 

Multiple predicates 
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Appendix-D: Testing Results 

The complete set of data that had been used to test and evaluate XCVQ-C 

and XCVQ-D is listed in the following table. This table contains all the actual 

results for these testing. 

 

XML file  name SCR SCT/Sec SDC/Sec CR CT/ Sec DT/Sec 

Turkey-meta  48.02 0.031 0.47 78.17 0.047 0.32 

Ubid  60.34 0.032 0.31 83.35 0.047 0.47 

321gone 38.99 0.042 0.46 73.31 0.078 0.47 

Yahoo_Shopping  42.47 0.051 0.62 76.54 0.087 0.64 

Cornell 68.66 0.062 0.31 87.5 0.102 0.47 

Texas   45.71 0.063 0.32 81.75 0.13 0.78 

Ebay 16.51 0.031 0.48 70.29 0.163 0.75 

Washington  50.55 0.031 0.78 81.1 0.2 0.63 

Michigan 70.83 0.047 0.41 89.3 0.42 1.09 

Berkeley  50.81 0.094 0.47 81.94 0.538 0.62 

j_caesar 30.32 0.14 0.64 70.91 0.58 1.1 

Richard II  24.9 0.22 0.8 68.51 0.72 1.56 

Henry IV, Part I 26.85 0.37 1.59 68.8 0.85 1.1 

Read  64.82 0.583 1.85 87.33 0.988 1.14 

Yahoo_Homes 43.32 0.68 3.04 83.35 0.96 2.19 

CD-Catalog 57.67 0.77 4.13 75.53 0.94 2.32 

Baseball  62.19 0.95 5.53 83.56 1.078 2.34 

EXI-Invoice 58.98 0.98 5.62 73.63 1.28 3.12 

Wsu 64.81 21.85 20.62 87.35 1.56 3.59 

Mondial 59.37 14.64 32.81 85.35 4.42 6.56 

Umw  66.37 39.17 31.56 90.35 4.43 4.37 

EXI-weblog 44.6 54.8 57.81 72.38 7.3 4.84 

Homeseekers 47.9 36.98 72.75 86.21 12.6 32.41 

Texas  67.24 42.93 79.7 86.8 16.75 36.04 

Nky  50.75 29.54 92.1 83.69 12.3 36.4 

Sweden-meta 78.23 57.53 97.6 93.52 12.4 36.41 

EXI-factbook 37.5 61.71 103.94 74.2 80.8 29.07 

Shakespeare 26.01 85.5 148.6 69.32 130.8 32.09 

XBench-DCSD- 27.76 103.7 155.7 69.92 194.6 38.28 
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Small 

XMark-1 38.45 120.8 165.3 75.38 225.6 39.01 

EXI-GeogCoord 0.0031 169.1 198.8 75.61 374.7 40.1 

EXI-Array 22.062 210.9 226.4 72.56 458.5 43.4 

NASA  39.18 256.3 254.2 88.51 517.3 43.9 

LineItem  30.799 312.8 297.7 81.51 692.4 78.6 

GB-meta 77.22 370.6 337.2 75.67 734.2 81 

EnWikiNews 69.421 398.9 412.3 68.52 810.6 89.89 

EnWikiVersity 81.397 417.7 489.8 70.55 894.7 97.39 

Tree Bank 37.68 426.3 504.4 79.8 956.2 99.87 

XBench-DCSD-
Normal 

30.19 486.9 645.6 
71.38 1069.8 100.19 

SwissPort  58.12 502.6 702.4 81.2 1296.4 105.75 

XMark-2 37.89 524.5 826.9 77.02 1368.8 113.65 

EnWikiQuote 68.25 565.8 924.3 69.69 1438.1 123.9 

DBLP  68.16 605.1 1022.3 79.54 1578.7 157.45 

EnWikTionary 85.43 1104.7 3750.7 70.85 4152.7 260.9 
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Appendix-E: XPath Query Evaluation Benchmark 

This appendix contains the complete set of queries that had been used to 

evaluate XCVQ-QP and comparing the results with other queriable XML 

compressors. It consists of three sets of queries: 

Set-1: The queries listed in this set were used to test the performance of 

XGrind and Xpress compressors, and were used to evaluate XCVQ-QP and 

compare the results with these two techniques. 

XML document Query 

Name 

Query 

BaseBall B1 SEASON/LEAGUE/DIVISION/TEAM/PLAYER/GIVEN NAME 

B2 //TEAM/PLAYER/SURNAME 

B3 /SEASON/LEAGUE//TEAM/TEAM CITY 

B4 /SEASON/LEAGUE//TEAM[TEAM CITY >= Chicago and TEAM CITY <= 

Toronto] 

Umw C1 /root/course/selection/session/place/building 

C2 //session/time 

C3 /root/course//session/time/start time 

C4 /root/course//session/time[start time >= 800 and start time <= 1200] 

Shakespeare  S1 /PLAY/ACT/SCENE/SPEECH/STAGEDIR 

S2 //PGROUP/PERSONA 

S3 /PLAY/ACT//SPEECH/SPEAKER 

S4 /PLAY/ACT//SPEECH[SPEAKER>= CLEOPATRA and SPEAKER <= 

PHILO] 
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Set-2: this set of queries, listed in the following table, was used to 

evaluate XCVQ-QP against XQzip compressor. 

XML document Query 

Name 

Query 

LineItem L1 //table/T/L_TAX 

L2 /table/T[L_TAX = "0.02"] 

L3 /table/T[L_TAX[[. >= "0.02"]]] 

L4 //T[L_ORDERKEY = "100"] 

L5 //L_ DISCOUNT 

TreeBank 

 

T1 //_QUOTE_//_NONE_ 

T2 //_QUOTE_//_BACKQUOTES_ 

T3 //_QUOTE_//NP[_NONE_ = "FTTVhQZv7pnPMt+EeoeOSx"] 

T4 //_QUOTE_//SBAR//VP/VBG 

T5 //_QUOTE_//NP/PRP_DOLLAR_ 

Shakespeare  S1 //SPEAKER 

S2 //PLAY//SCENE//STAGEDIR 

S3 //SPEECH[SPEAKER = "PHILO"]/LINE 

S4 //SCENE/SPEECH/LINE 

S5 //SCENE[TITLE="SCENE II. Rome. The house of EPIDUS"]/LINE 

 

Set-3: the queries listed in the following table were used to evaluate 

XCVQ-QP against XSAQCT compressor. 

 
XML document Query 

Name 

Query 

dblp D1 /dblp/article/cdrom 

D2 /dblp/mastersthesis/@key 



143 

LineItem L1 /table/T/L_COMMENT 

L2 /table/T/L_ORDERKEY 

Shakespeare  S1 /PLAYS/PLAY/TITLE 

S2 PLAYS/PLAY/ACT/SCENE/STAGEDIR 

SwissPort P1 /root/Entry/@id 

P2 /root/Entry/Ref/Comment 

uwm U1 /root/course_listing/course 

U2 /root/course_listing/restrictions/A/@HREF 
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Appendix-F: Independent testing 

The following table contains the XML documents that have been used in an 

independent testing to find the compression ratio using XCVQ. To find the 

compression ratio, the following equation was used:  
 

 

 
 

The independent testing was made on environment Quad-Core Intel Xeon 

processor that has the speed of 2.8 GHz. The operating system was Mac OS X 

10.6.4 with 8GB of hard drive. 
 
 

XML File Name Compression Ratio 

Setup of points 50% 
books1 50% 

cd_catalog 60% 
TURKY_meta 66.7% 

data_20101111102811 57.9% 
ubid 81% 

321gone 0.72% 
yahoo 73.1% 
cornell 87.1% 
texas 84.8% 
ebay 69.4% 

washington 81.1% 
berkeley 81.4% 
j_caesar 71% 
rich_ii 68% 

Hen_vi_1 68.7% 
reed 87.2% 

yahoo_homes 83.3% 
BaseBall 83.4% 

EXI-Invoice 79.8% 
Mondial 85.3% 

uwm 90.35% 
EXI-weblog 88.3% 
homeseekers 86.2% 
texas_house 81.7% 

nky.xml 83.7% 
SWEDEN_meta 93.6% 

EXI-factbook 81.5% 
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Appendix-G: XML dummy elements ratio 

The following table lists the ratio of the dummy elements in the tested XML 

documents which is the same ratio that represents the loss in the structure of 

these documents. 
 

XML file  name %Dummy elements 
ratio 

321gone 7.4 
Ebay 1.3 
Ubid 16.8 

Yahoo_Shopping 9.2 
Homeseekers 6.2 

Nky 3.8 
Texas 6.3 

Yahoo_Homes 2.2 
XMark-1 1.5 
XMark-2 0.4 
Baseball 1.2 
Berkeley 12.2 
Cornell 19.3 

Michigan 19.5 
Texas 4.1 

Washington 4.7 
Read 4.3 
Umw 14.6 
Wsu 12.4 

CD-Catalog 0.0 
DBLP 0.0 

EnWikiNews 0.9 
EnWikiQuote 0.3 
EnWikiVersity 1.2 
EnWikTionary 1.1 

EXI-Array 0.0 
EXI-factbook 0.0 

EXI-GeogCoord 0.0 
EXI-Invoice 0.0 
EXI-weblog 0.0 

GB-meta 0.0 
Sweden-meta 5.9 
Turkey-meta 0.0 

Henry IV, Part I 1.6 
Richard II 1.4 
j_caesar 1.2 

Shakespeare 2.4 
LineItem 0.0 

XBench-DCSD-Normal 0.0 
XBench-DCSD-

Small.xml 
0.0 
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Mondial 9.2 
NASA 0.0 

SwissPort 0.0 
Tree Bank 0.0 
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