
University of Huddersfield Repository

AlHamadani, Baydaa

Retrieving Information from Compressed XML Documents According to Vague Queries

Original Citation

AlHamadani, Baydaa (2011) Retrieving Information from Compressed XML Documents According
to Vague Queries. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/11179/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

1

Retrieving Information from Compressed XML

Documents According to Vague Queries

Baydaa Al-Hamadani

A Thesis Submitted to the University of Huddersfield in Partial Fulfilment of the

Requirements for the Degree of Doctor of Philosophy

July, 2011

2

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Joan Lu,
for her guides and for her continuous support through the different stages
of this research. Dr. Joan was always finds the time for me not only to
advise me but to listen even to the smallest problems and does her best
to help me solving them.

My grateful and thanks go to the University of Huddersfield, who

supported me financially and morally and gave me a great opportunity to
complete my degree. Continuous thanks go to every member in this
great University specially the technician team in the School of Computing
and Engineering who never been hesitated or delayed in helping me and
all the other researchers.

Great appreciations go to Dr. Christopher Newman and Dr. Hugh

Osborn for being very helpful and for their great support to finish this
research. I am really grateful for everything they have done to me.

Uncountable thanks to my husband (Raad) for encouraging and

motivating me to complete this research. Without him this research would
never see the light. I am really grateful for whatever he did to support me
and being very patient. Moreover, I would like to thank my son (AlHasan)
and my daughter (AlZahraa) for being so patient with me and being very
understandable for my situation.

My warm appreciations go to my parents, who spent their lives

dreaming of seeing this work completed and who supported me with all
they have. I wish I can return a very small part of their favour. I also thank
my mother in law, my sisters in law and all my relatives who were praying
to see this work in this stage and who were supporting me all over the
last few years.

Through the few past years lots of people were supporting and

encouraging me. Thank you to all of my friends and colleagues.

3

Dedication

To my only love, Raad...

To my wonderful parents...

To my son and daughter...

To the unforgettable home...

May Allah who hold the world in his hand, holds them all
in his palm.

4

Abstract

XML has become the standard way for representing and transforming data over the World

Wide Web. The problem with XML documents is that they have a very high ratio of redundancy,

which makes these documents demanding large storage capacity and high network band-width

for transmission. Because of their extensive use, XML documents could be retrieved according to

vague queries by naive users with poor background in writing XPath query. The aim of this

thesis is to present the design of a system named “XML Compressing and Vague Querying

(XCVQ)” which has the ability of compressing the XML document and retrieving the required

information from the compressed version with less decompression required according to vague

queries.

XCVQ first compressed the XML document by separating its data into containers and then

compress these containers using the GZip compressor. The compressed file could be retrieved if

a vague query is submitted without the need to decompress the whole file. For the purpose of

processing the vague queries, XCVQ decomposes the query according to the relevant documents

and then a second decomposition stage is made according to the relevant containers. Only the

required information is decompressed and submitted to the user.

To the best of our knowledge, XCVQ is the first XML compressor that has the ability to

process vague queries. The average compression ratio of the designed compressor is around

78% which may be considered competitive compared to other queriable XML compressors.

Based on several experiments, the query processor part had the ability to answer different kinds

of vague queries ranging from simple exact match queries to complex ones that require

retrieving information from several compressed XML documents.

5

Table of Contents

Acknowledgments ...2
Dedication ..3
Abstract ...4
Table of Contents ...5
Copyright Statement..7
List of Tables ...8
List of Figures ..9
List of Abbreviations ... 10
CHAPTER 1 Introduction ... 11

1.1 INTRODUCTION .. 11
1.2 RESEARCH HYPOTHESIS AND RESEARCH METHODOLOGY .. 12
1.3 RESEARCH QUESTIONS .. 14
1.4 MOTIVATIONS AND OBJECTIVES .. 15
1.5 RESEARCH CONTRIBUTIONS .. 16
1.6 OVERVIEW OF THE THESIS .. 16

CHAPTER 2 Research Background .. 18
2.1 INTRODUCTION .. 18
2.2 XML COMMENCEMENTS AND IMPORTANCE .. 18

2.2.1 XML document types ... 20
2.2.2 Java API for XML (JAXP) ... 22
2.2.3 XML Retrieval .. 23
2.2.4 XML Query Languages ... 25

- XPath ... 25
- XQuery .. 27
- XLink and XPointer .. 27
- NEXI ... 28

2.3 TYPES OF QUERIES .. 28
2.4 VAGUE QUERIES .. 30
2.5 CHAPTER SUMMARY ... 31

CHAPTER 3 State of the Art Technology in Compressing and Querying XML
Documents ... 33

3.1 XML COMPRESSION TECHNIQUES .. 33
3.1.1 Queriable XML Compressors: .. 35

3.2 PROCESSING VAGUE QUERIES TECHNIQUES ... 40
3.3 PROBLEM IDENTIFICATION.. 43
3.4 CHAPTER SUMMARY ... 44

CHAPTER 4 XML Compressing and Vague Querying (XCVQ) Design 45
4.1 SYSTEM ARCHITECTURE ... 45
4.2 XCVQ-C DESIGN ... 47

4.2.1 Creating the Structured-Tree & its Abridgment .. 48
4.2.2 Creating the Containers ... 50
4.2.3 Compressing the Containers .. 51

- LZW Compression Technique .. 52
- Gzip Compression Technique .. 53

4.3 XCVQ-C ALGORITHMS AND THEIR CORRECTNESS ... 53
4.3.1 startElement algorithm ... 54
4.3.2 endElement algorithm ... 56
4.3.3 endDocument algorithm ... 57

4.4 XCVQ-D DESIGN ... 58
4.5 XCVQ-D ALGORITHM AND ITS CORRECTNESS .. 60
4.6 XCVQ-QP DESIGN ... 64

4.6.1 XPath Query ... 64
- Path Matching Expansion.. 65
- Data Value Matching Expansion ... 69
- Function Set Expansion ... 70

6

4.6.2 Query Decomposer .. 71
4.6.3 Query relaxation .. 74
4.6.4 Ranking .. 78
4.6.5 Decompression .. 79

4.7 CHAPTER SUMMARY ... 80
CHAPTER 5 XCVQ Testing, Evaluation and Discussion ... 81

5.1 TESTING STRATEGY ... 81
5.1.1 Testing XCVQ’s Behaviour ... 81
5.1.2 Testing XCVQ’s Structure & Functionality ... 84

5.2 TESTING FACTORS .. 85
5.3 DATA PREPARATION ... 87
5.4 TESTING ENVIRONMENT .. 88
5.5 XCVQ-C AND XCVQ-D TESTING .. 88

5.5.1 XCVQ-C and XCVQ-D Testing: Stage-1 ... 88
5.5.2 XCVQ-C and XCVQ-D Testing: Stage-2 ... 91

5.6 XCVQ-C & XCVQ-D EVALUATION ... 92
5.7 XCVQ-QP TESTING.. 95

5.7.1 QFT .. 95
5.7.2 QPT .. 96

5.8 XCVQ-QP EVALUATION .. 98
5.9 CHAPTER SUMMARY ... 100

CHAPTER 6 Conclusions and future work... 102
6.1 CONCLUSION ... 102
6.2 RECOMMENDATIONS .. 104
6.3 FUTURE WORK .. 105

Publications .. 107
Reference List .. 108
Appendix-A: XPath’s EBNF .. 117
Appendix-B: Implementing XCVQ .. 120
Appendix-C: XML Corpus & XPath Benchmark ... 134
Appendix-D: Testing Results .. 139
Appendix-E: XPath Query Evaluation Benchmark ... 141
Appendix-F: Independent testing ... 144
Appendix-G: XML dummy elements ratio .. 145

7

Copyright Statement

The author of this thesis (including any appendices and/or schedules to

this thesis) owns any copyright in it (the “Copyright”) and she has given the

University of Huddersfield the right to use such Copyright for any

administrative, promotional, educational and/or teaching purposes.

Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulation of the University Library. Details of these

regulations may be obtained from the Librarian. This page must form part of any

such copies made.

The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any productions of copyright works, for example graphs and tables

(“Reproduction”), which may be described in this thesis, may not be owned by

the author and may be owned by third parties. Such Intellectual Property Rights

and Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

Rights and/or Reproductions

8

List of Tables

Table 2-1: Differences between Data-centric and Document-centric XML 21

Table 2-2: SAX and DOM features .. 22

Table 2-3: Query types ... 29

Table 3-1: The main differences between XML-conscious and XML-blind compressors
 .. 34

Table 3-2: The main limitations of some queriable XML compressors. 35

Table 3-3: A comparison between different compression techniques. 38

Table 3-4: Query types with the compression techniques process each. 43

Table 4-1: Compression granularity comparison. .. 52

Table 5-1: XCVQ Testing factors ... 85

Table 5-2: Average CR for all the tested XML compressors. .. 93

Table 5-3: XPathMark-FT query benchmark .. 96

9

List of Figures

Figure 1-1: System Development Methodology (Morrison and George, 1995) 13

Figure 2-1: XPath Queries Examples. (a): CO query. (b) CAS query 24

Figure 2-2: The role of XPath between other XML query languages. (W3Schools.com,
2006a) .. 25

Figure 3-1: The distribution of the compression techniques over the years 39

Figure 4-1: Preliminary Architecture of XCVQ ... 46

Figure 4-2: The complete design of XCVQ .. 47

Figure 4-3: An XML example ... 49

Figure 4-4: The structured-tree for the example in Figure 4-3 50

Figure 4-5: Creating containers process. (a) the path-Dictionary. (b) the container. 51

Figure 4-6: (startElement) algorithm .. 54

Figure 4-7: (endElement) algorithm ... 56

Figure 4-8: (endDocument) algorithm .. 57

Figure 4-6: Architecture of XCVQ-D ... 59

Figure 4-10: XCVQ-Decompression algorithm .. 62

Figure 4-11: The architecture of the query processor. ... 66

Figure 4-12: String-similarity match algorithm ... 68

Figure 4-13: The design of XCVQ-Query Decomposer ... 72

Figure 5-1: XCVQ State Graph .. 82

Figure 5-2: SCR for the XML corpus .. 89

Figure 5-3: (a) Structure Compression Time for the XML corpus and (b) Structure
Decompression Time for the XML corpus. ... 90

Figure 5-4: CR for the XML corpus .. 91

Figure 5-5: (a) Compression Time and (b) the Decompression Time for the XML corpus.
 .. 92

Figure 5-6: Evaluating XCVQ-C CR. .. 93

Figure 5-7: Evaluating XCVQ-C CT ... 94

Figure 5-8: Evaluating XCVQ-D DT. .. 95

Figure 5-9: Testing XCVQ-QP Querying time .. 97

Figure 5-10: XCVQ Query processing time against (a) XGrind and Xpress, (b) XQZip,
and (c) XSAQCT. ... 99

10

List of Abbreviations

API Application Programming Interface

CAS Content and Structure

CO Content Only

CR Compression Ratio

CT Compression Time

DOM Document Object Model

DR Data Ratio

DT Decompression Time

DTD Data Type Definition

EBNF Extended Backus-Naur Form

EXI Efficient XML Interchange

H Data Compression Entropy

INEX Initiative for the Evaluation of XML retrieval

JAXP Java API for XML

LZW Lempel-Ziv-Welch

NEXI Narrowed Extended XPath I

QFT Query Functional Test

QPT Query Performance Test

RD Regular Documents

SAX Simple API for XML

SD Structural Document

SDM System Development Methodology

SGML Standard Generalized Markup Language

TD Textual Document

W3C World Wide Web Consortium

XCVQ XML Compressing and Vague Querying

XCVQ-C XCVQ Compressor

XCVQ-D XCVQ Decompressor

XCVQ-QP XCVQ Query Processor

XML Extensible Markup Language

XPath XPath: a XML query language

XQuery XQuery: a XML query language

XSLT XML Style sheet Language Transformation

11

CHAPTER 1 Introduction

1.1 Introduction

The eXtensible Markup Language (XML) is a World Wide Web Consortium

(W3C) recommendation which has widely been used in both commerce and

research. In recent years, we have witnessed a dramatic increase in the volume

of XML digital information that is either created directly as an XML document

or converted from another type of data representation. The importance of XML

is mainly due to its ability to represent different data types within one document,

solving the problem of long-term accessibility, and providing a solution to the

problem of interoperability (Al-Hamadani et al., 2009).

Due to the replication of the XML schema in each record, the XML document

is considered to be one of the self-describing data files, which means that these

kinds of files have a lot of data redundancy in relation to both its tags and

attributes (Ray, 2001). For the above reason the need to compress XML

documents is becoming increasingly dramatic. Furthermore, what has evolved is

the urgent need to retrieve information directly from the compressed documents

and then decompress only the retrieved information (Ferragina et al., 2006).

Because of the wide range of XML documents in use and the different kinds

of users, being able to deal with all kinds of queries has become a key issue.

Some of these queries may have imprecise constraints which cannot be

processed directly due to the grammar restriction in the existing query

languages. However, these types of queries, which are known as vague queries,

appear to be common when the users of the XML documents have little

knowledge about the document structure, or may lack the skills to write a precise

and meaningful query. Another type of vague queries occurs when the query is

presented without the presence of a Schema or the data type definition (DTD) of

the document.

According to the relevant literature, there are a number of techniques that

compress the XML documents and query the compressed version with no or

12

partial decompression. These techniques process almost all types of queries but

not the vague queries; admittedly, there are a number of researchers now trying

to process vague queries on the original XML document.

The research carried out in this thesis primarily concerns designing and

implementing a new technique called XML Compressing and Vague Querying

(XCVQ) which consists of two stages. In the first stage, it separates the data part

of the XML document into several containers according to the path of that data

within the document. Then each of the containers is compressed separately using

a back-end compressor. The second stage processes the vague queries by

decomposing them into multiple sub-queries, retrieves information from the

compressed XML document according to each sub-query, combines the

retrieved information according to the given query, and finally decompresses

only the most relevant information.

To eliminate the amount of technologies associated with the XML documents

and to make the process of compressing and retrieving information easier for the

inexperienced users, XCVQ is designed to be schema independent in both phases

of the compressor and the query processor.

1.2 Research Hypothesis and Research Methodology

This thesis is based on the following hypotheses:

1. The existing XML compression techniques can be improved to construct

a new schema independent XML compressor with a higher compression

ratio.

2. The redundancy in the XML documents significantly affects the size of

those documents and can be reduced to more than half of the original file

size.

3. The compressed XML document can be retrieved according to vague

queries. Vague queries are those queries which do not follow the

semantic rules of current query languages. They occur when the exact

matching user’s query does not retrieve the required information either

because of the lack of experience in writing a query or the absence of the

document’s schema.

13

4. The necessity of retrieving information from more than one XML

documents without the need to specify an exact relative document.

The above hypotheses are tested throughout this research by using the

System Development Methodology (SDM) (Nunamaker et al., 1991; Morrison

and George, 1995; Hevner et al., 2004). This methodology has been widely used

by software developers and information system specialists (Meersman et al.,

2008; .Yousof et al., 2011) As depicted in Figure 1-1, this methodology consists

of four main stages:

1. Identifying research problems: This stage focuses on drawing up the

research questions due in part to the lack of theories in the research field

and/or build upon existing theories. In this thesis, the research questions

are set from two XML fields, compressing the XML documents and

querying them. As a result, a new XML compressor is introduced

(CHAPTER-4) with the ability to retrieve information from the

compressed document according to vague queries. The designed system

Figure 1-1: System Development Methodology (Morrison and George, 1995)

Research
question

No theory yet
developed

Existing theory
in question

Research Problems

Development
of new theory

Confirmation/
Refutation of

existing theory

Conceptual Contributions

System
Specification

Prototype
System

Practical Contributions

New domain
knowledge

Conceptual
Development

Requirements
Identification

Prototyping

Architecture/
Methodology
Development

Analysis/
Design Implementation

Observation,
Testing,
Analysis

Evaluation

Revise Prototype

14

may improve the querying process to retrieve information from XML

documents.

2. Prototyping and evaluation: In the second stage, SDM spotlights the

implementing or prototyping the proposed system. It starts by designing

the conceptual model of the proposed system, identifying the necessary

requirements, designing the complete architecture of the system, and then

implementing the system to prepare it for the evaluation process by

testing and analysing it. In this thesis, the complete architecture and the

detailed design of the system are laid out in CHAPTER-4, the

implementation part is in Appendix-F, and the evaluation process is

given in CHAPTER-5.

3. Conceptual and practical contributions: As a final stage, SDM sets

the main contribution to the knowledge. In this thesis all the

contributions, conclusions, and future developments are presented in

CHAPTER-6.

1.3 Research Questions

Following the SDM as shown in Figure 1-1, outlining the research questions

should be made before proceeding further with defining the actual prototype.

The research into this thesis focused on two main parts, each of which has its

own set of questions to be addressed:

1. Is it possible to design a new compression technique that has the ability

to compress XML documents and achieve a better compression ratio

without the need for the document’s schema or its DTD?

2. What is the influence of the structure redundancy on the overall size of

the XML document?

3. What are the main types of vague queries and when could they occur?

Has the existing XPath query language the ability to answer vague

queries? If not, what is the required expansion that should be made on

XPath to provide it with such ability?

15

4. How does one determine the relevant XML document(s) from thousands

of documents without the need to scan them completely for time saving

purposes? And is it possible to retrieve information from more than one

XML document without the pre-specification of these documents using

one XPath query?

1.4 Motivations and Objectives

This work is initially motivated by the need to expand the XML query

languages. These languages are treating the user’s query in Boolean nature

(Campi et al., 2009) in which a specific XML node is selected if and only if it

satisfies exactly the query or part of it. This case applies more restrictions to the

inexperienced user or in the case of schema absence.

XML has become a focus for research in both the database as well as the

document research communities (Harrusi et al., 2006; Moro et al., 2008). This

research is motivated by the strength of XML such as its simplicity, the

separation of data from the structure, interoperability, and human and machine

readability. All these features and more make the XML document a reliable way

for data transformation on the web. However, the redundancy in the structure of

the XML documents enlarges their sizes, the very reason that inspired

researchers to produce compression techniques dedicated to XML. Other

researchers were interested in retrieving information from the compressed XML

document to make it easier to use these fairly large documents with low resource

devices. Although these techniques succeeded in answering several types of

queries, they are incapable of processing vague queries, which is yet another

motivation for this research.

The main objective of this research is to investigate the different types of

vague queries and set new methods to solve these queries in the case of existing

compressed XML document. The design and implementation of a system that

has the ability to compress the XML document and retrieve information from the

compressed file according to vague queries, let alone the need to decompress

only the retrieved relevant information, is another objective of this research.

16

Since it was very difficult to have access to the source code of an XML

compressor to be used as a first stage to achieve the main objective, another

objective therefore was to design and implement a new XML compressor that

has the ability to achieve a better compression ratio than the existing techniques.

1.5 Research Contributions

This research will contribute to the fields of XML compression and XML

retrieving in the following areas:

1. A new XML compression technique is introduced that compresses XML

documents efficiently and independently from their Schema or the DTD.

The designed compressor achieved a compression ratio of 1.83 which is

higher than the best existing techniques.

2. Identify the exact ratio of the redundancy of the XML structure. This

redundancy is abridged by up to half the size of the original file.

3. The main contribution of this research is the introduction of a new

method to answer vague queries, a kind of queries that can be submitted

by naive users or via the absence of the document’s schema. The new

method is adjusted to process the vague queries under the compressed

XML documents and retrieve the most related results.

4. Introduce the idea of retrieving information from XML documents

without specifying the exact documents that have the required

information.

1.6 Overview of the Thesis

Apart from Chapter 1, the thesis has six more chapters:

Chapter 2: Research Background. This second chapter sets forth the research

background including all the techniques used in the research process. The most

important features of XML documents are listed, accompanied by their types,

the API used to parse them, the techniques used to retrieve information from

17

them, and their query languages. This chapter also lists all the query types and

provides a complete definition of vague queries.

Chapter 3: State-of-the-Art Technologies. This chapter is separated into two

main parts. The first one concentrates on discussing the main XML compression

techniques and sets the differences between them, their advantages and their

drawbacks. The second part discusses the techniques that have been used to

solve vague queries from XML documents.

Chapter 4: XCVQ Design. This chapter illustrates the design of the XCVQ

system starting with the main architecture of the complete system. Then it sets

the detailed design of the compressor, followed by the design of the

decompressor. This chapter ends by giving the complete design of the vague

query processor. It is supported by the algorithms that are used to answer the

research questions.

Chapter 5: XCVQ Testing, Evaluation and Discussion. This chapter sets all

the testing process for the XCVQ-compressor to obtain the compression ratio and

for the XCVQ-query processor to determine its functionality and the

performance. An extensive test has been done to compare XCVQ with the other

existing techniques. All the results of these tests can be seen in this chapter. It

ends with the discussion part that illustrates the main features, advantages, and

drawbacks for the designed system.

Chapter 6: Conclusion and Future Works. This chapter summarizes the main

conclusions and contribution of the research and suggests more development and

expansion for further research.

18

CHAPTER 2 Research Background

2.1 Introduction

This chapter provides the background to our research. It comprises several

key parts. The first one illustrates the most important techniques that motivate

and support this research. XML, being the most important key technology, is

presented in this section, alongside the structure of the documents which would

be crucial in the design of the compressor. XML query languages and the main

differences between them are also discussed because of their importance in

retrieving information from such documents.

2.2 XML Commencements and importance

Before the rise of the internet, 1980s witnessed the invention of Standard

Generalized Markup Language (SGML) as a way to display information

dynamically. Later, in 1995, W3C recommended SGML to be used for the

internet. Problems occurred when using SGML included the lack of widely

supported style sheets, complexity and instability in the software that were using

it, and the difficulties in interchanging SGML data due to its varying levels

among SGML software packages.

In 1996, the first XML working draft was intended to be a powerful substitute to

SGML. It was first recommended by the World Wide Web Consortium (W3C)

in 1998 to be used as a mark-up language for storing and exchanging data

through the web. The most recent recommendation was published in 2008,

which is the fifth edition of the XML (W3C, 2008). In a very short period of

time, XML has become the basis for data exchange through the Internet. This is

due to its several features such as the following (NG et al., 2006; Gerlicher,

2007; Groppe, 2008):

19

 Readability: XML is readable by both human and machine. This

means that the data represented by XML can be used by different

users and by different parsing code.

 Interoperability: This is the ability of the hardware and software to

use XML documents without the need to make any changes to the

software or the data itself. This means that XML data is stripped of

any dependency on software and machine.

 Long term usability: Since XML documents are represented using

the Unicode; these documents are expected to stay in secure storage

and usage for years (Augeri et al., 2007; De Meo et al., 2007) .

 Extensibility: This means that there are no fixed set of tags that

should be used to represent data.

 Generality: XML documents have the ability to represent different

kinds of data representation such as images, sounds, videos, texts,

etc.

 Internationality: Almost all written languages can be represented in

XML documents since they support Unicode (Norbert and Kai,

2004).

In spite of all these advantages, XML has also some weaknesses:

• They have a huge amount of redundancy which makes these documents

demand high storage memory to be archives, high band width to be

transmitted, and high cost to be processed.

• The huge amount of technologies surrounding it complicates the use of

these documents such as schema, DTD, XSLT, SAX, DOM, XPath,

20

XQuery. These technologies render the use of these documents

somewhat difficult especially with naive users or in cases where these

technologies are absent, it would be just as difficult as they are

considered necessary for dealing with XML documents.

• The problems that can occur when dealing with the document namespace

should be carefully sorted out otherwise other problems and

complications could occur during the processing of these XML

documents.

2.2.1 XML document types

The main building blocks of any well-formed XML document are nested

open tags and their equivalent close tags. These tags can be formed as follows

(Hunter, 2000; Anders, 2009; Goldberg, 2009):

1. Elements: each element starts with an open tag (<p>) and ends with an

end tag (</p>). Everything between and including these tags are an

element. The general structure of an element is as follows:

 <e at1=”v1” at2=”v2” atn=”vn”>d1d2d3…dm</e>

Such that n≥0, and m≥0

(1)

Each element has an element-name (e) which should follow the

following rules:

o Case sensitive names.

o Consist of characters, numerals, underscores and tabs.

o Start with a character or an underscore.

o Should not start with xml or XML.

Elements can have optional element-value ({d1d2d3…dm} in (1)) which

represent the actual data values for the XML document.

2. Attributes: attributes (if any) appear within an element and they provide

more information about that element. Each attribute has an attribute-

name ({at1, at2, atn} in (1)) which should follow the same rules for an

21

element-name, and an attribute-value ({v1, v2, … vn} in (1)) which can be

any printable character between a pair of quotations.

3. Data text: the data in a XML document could either be attribute-values

or element-values. This text can be a list of any keyboard printable

character from the Unicode set ({d1d2d3…dm} in (1)). Some escape

character should be used to embed some of the characters in the data text

such as (<), (>), (&), ("), and (') to represent (<),

(>), (&), (“), and (‘) respectively.

4. Comments: comments can be added anywhere in the XML document to

provide any further description but is not part of the main document. In

XML, the comment start tag is (<!--) and the end tag is (-->).

5. Declaration: this single statement (if any) should be the very first line of

the document. It supplies the XML processor with information such as

the version, encoding and other information about the document. Its start

tag is (<?xml) and its end tag is (?>).

Table 2-1: Differences between Data-centric and Document-centric XML

Criteria Data-centric Document-centric

XML role Superfluous Significant

Order Not very important Significant

Consumption Machine Human

Data granularity Fine Large

Examples Catalog and flight schedules Books and advertisements

Depending on the amount of data (attribute-values and element-values) in

the XML document, Bourret (2005); and Manning et al. (2008) classified XML

documents into two types, either data-centric or document-centric. Table 2-1

lists the main differences between these two types according to certain criteria.

22

With data-centric XML documents the roles of the XML elements and attributes

are to arrange these data in atomics. These documents are usually created and

used by machines such as the XML documents that are generated by a Database

Management System, or those used to transfer data between different databases.

In contrast, XML role in document-centric XML documents is very

important since it is the only way to organize this document into large units of

information. The order of the elements inside these documents is important since

any change in the order can produce a completely different document.

2.2.2 Java API for XML (JAXP)

Java programming language, and some other languages, provides different

types of XML Application Programming Interface (API) such as SAX, DOM,

and XSLT (Violleau, 2001; McLaughlin and Edelson, 2006; Williams, 2009) in

order to process the XML documents by means of writing a computer

programme using several programming languages. SAX (Simple API for XML)

scans the XML document sequentially and throws up events that the

programmer can handle. These events are thrown by the parser when it detects

the start-document, end-document, start-element including a list of all its

attributes, end-element, and characters. The programmer should write suitable

codes for each event to process an entire XML document. Since each event

occurs only once for each element, all the required work needed to process the

document should be done in one cycle.

Table 2-2: SAX and DOM features

SAX DOM
Event based model Tree-like structure

Sequential access Random access

Required low memory Memory intensive

One scan for the document Multiple traverse for the

document

1998, David Megginson's 1998, W3C’s

23

By using DOM (Document Object Model) parser, the document is

represented in the main memory of the computer as a tree-like structure. The

programmer can write the code to traverse this tree as many times as s/he needs.

Table 2-2 sets out the main features of SAX and DOM. It shows that using

DOM parser is memory consuming and since the aim of this research is to

reduce the amount of memory used to process the XML documents, the designed

system used SAX parser to process these documents.

While SAX and DOM parsers should be used through a programming

language, XSLT (XML Style-Sheet Language Transformation) is a declarative

language which is used to transform the XML document into another document

type (Tidwell, 2008; Williams, 2009). Its two main purposes are: (1) produce

HTML documents from XML documents for browsing purposes, and (2)

retrieve information from the XML document using the XPath.

2.2.3 XML Retrieval

XML retrieval is considered to be one of the semi-structured retrieval

techniques (Manning et al., 2008). This adds more challenges to meeting the

user’s needs. The first difficulty in structured retrieval is that the user requires

only parts of the documents and not the entire document like unstructured

retrieval techniques do (Stamatina et al., 2006). This challenge leads to another,

which is the identification of the most relevant parts from the document to the

user’s query. To solve this difficulty there are two approaches, either to retrieve

the largest units of the document that contains the required information (top

down) (Norbert and Kai, 2004; Jiaheng, 2006), or to retrieve the smallest unit

by starting the search from the leaves of the XML tree (bottom up) (Fuhr et al.,

2006).

Retrieving information from XML documents provides the users with the

extra abilities to specify the exact piece of information needed or to combine

different parts from of the document that meet the user’s need. The user’s

queries can specify the required information as well as the place where this

information is to be found inside the document. For instance the user may ask

24

about “a table of all XPath functions in XPath description chapter”. In this case

the “XPath functions” and the “XPath description” are about the content of the

document, while the “table” and the “chapter” are about its structure.

 XML documents can be retrieved according to their type either text-centric

or data- centric retrieval. In text-centric, an approximate matching process is

used to match the text of the query with the text of the document while the

structure role is as a framework within this process (Manning et al., 2008). Since

the matching process is done with the data part of the XML document, the

retrieved information is expected to be long and they should be ranked. On the

other hand, data-centric retrieval retrieves only attribute values and numeric data

using exact match. The retrieved information from this type is short and the

ranking is not significant.

Another classification for XML retrieving techniques is done according to

which part is more significant in the user’s query: the content part or the data

part (Hunter, 2000; Sanz, 2007). Content-Only (CO) queries are rich of text and

focus on the data part of the XML document. The user can add some structural

constraints to the query to specify the granularity of the required information. As

seen in Figure 2-1-(a), the XPath query focuses on retrieving the title and the

content of a paragraph which is considered the data content of the document. To

process these queries, some of the techniques use the traditional IR techniques

by completely ignoring the structural constraints and treat the XML document as

//title[title = “XML and XSLT”] and sec[par = “We declare our choice of an associated
style sheet for an XML instance”]

(a)

//article/section/para[1]

(b)

Figure 2-1: XPath Queries Examples. (a): CO query. (b) CAS query

25

a traditional text file, while other techniques decompose the query into several

small queries and process each one separately.

Content-And-Structure (CAS) retrieval takes into their considerations the

structural part of the XML document and provides the user with extra

advantages to accurately specify the exact part required from the relevant

document. The XPath example in Figure 2-1-(b) concentrates on finding the first

paragraph which is in a section for the specific article.

2.2.4 XML Query Languages

Different kinds of query languages have been proposed in order to retrieve

specific information from an XML document. All these languages have a

common feature in that the user should specify the exact XML document(s)

wherefrom s/he would like to retrieve the information. This section spotlights

the main features of some of the query languages which are either recommended

by W3C (XPath, XQuery, XPoint, and XLink) or used by Initiative Evaluation

of XML retrieval (INEX) working group (NEXI).

- XPath

Standing for XML Path language, it is a descriptive language which takes an

XML document and a user query as an inputs and produces specific nodes from

this document as output (Kay, 2004).

Figure 2-2: The role of XPath between other XML
query languages (W3Schools.com, 2006a)

26

It is considered to be the core to all other XML query languages, as

illustrated in Figure 2-2 (W3Schools.com, 2006a). The main building blocks for

an XPath expression are: (1) expressions deal with atomic values which include

comparative and arithmetical operations, (2) expressions for selecting specific

nodes from a tree, and (3) operation on every item in a specific sequences, such

as using the “for” expression.

In 1990, W3C recommends XPath 1.0 as an XML query language (W3C,

1999). In 2010 W3C recommend the last version of XPath 2.0 to be a standalone

query language or to be embedded with XSLT or XQuery (W3C, 2010a). It

comes with some developments on the first version. These changes make XPath

easy to use, improve its interoperability, simplify the manipulation of string

contents and Schema-typed content, and to increase its efficiency. These

developments include: (Holman, 2002; Kay, 2004; W3C, 2007b; Kay, 2008)

1. Data types: XPath 2.0 offers new data types such as integers, single

precision, date, time, and any data type that can be defined by the user

through XML Schema.

2. Path expressions: Not very big changes on path expression compared to

XPath 1.0, only the ability to use the function call within the path

expression is a slight change.

3. Operators: addition operators are used to support XPath 2.0 functions.

Examples of these operators are: “is” to test if two expressions return the

same set of nodes, “<<” and “>>” to test the order of the two operands,

“except” and “intersect” to find the difference and the intersection

between two node sets, and “eq”, “ne”, “lt”, “le”, “gt”, “ge” to make

a comparison between atomic values and return a node set.

4. Functions: Some new functions are added to the list of the available ones

in XPath 1.0 such as: “max()”, “min()”, “avg()”, functions to

manipulate the new data types like date, time, and QNames,

generalization of string manipulation functions to deal with user-defined

types.

Path expressions thus provide a very powerful mechanism for selecting

nodes within an XML document, and this power lies at the heart of the

XPath language (Sigurbjornsson and Trotman, 2003; Kay, 2004).

27

- XQuery

In 2007, W3C first recommended XQuery as an XML query language and

they made the last recommendation in 2010 (W3C, 2010b). This querying and

descriptive language uses XPath to retrieve information from XML documents

whereas the simplest XQuery expression is an XPath expression. The main

engine in XQuery is the “FLWOR” expressions which stand for For-Let-Where-

Order-Return. In these expressions, the “for” expression selects a specific node

list from a specific document which can be repeated several times within the

same expression. The “let” expression associates with each node in the node

list(s) generated by the first expression or another node retrieved from another

XML document. The “where” expression filters the resulting list according to a

specific condition. The “order” expression sorts the list according to a specific

atomic. Finally, the “return” expression specifies the required information from

the node list(s).

The main advantage of XQuery over XPath is that XPath by its own cannot

organize the output of the query in a specific format while XQuery does

(McGovern et al., 2003). Although XML Style sheet Language Transformation

(XSLT) can do organize the format of the retrieved information, but it could be

difficult for the user to use it due to its recursive-structure and mixed name-

spaces.

Another feature in XQuery is its capability to retrieve information from

more than one specified XML documents. XPath is suffering from the lack of

this feature.

Although it is considered to be very easy to use, XQuery is a read-only

query language. This means that XQuery does not have the ability to exchange

or create an XML document like SQL to the databases.

- XLink and XPointer

XLink stands for Linking Language and recommended by W3C in 2001

(W3C, 2001). The main purpose of XLink is to make either “simple” links

28

between two XML resources, or “extended” links between more than two XML

resources (W3Schools.com, 2006a). With the “simple” links, any element inside

the XML document can be linked with another resource such as an image, a text

file or even another XML document just like the “a” element in HTML which

performs Unidirectional link. When the link type is “extended” this means that

the link will be bidirectional between the XML document and the other

resource(s).

XPointer stands for XML Pointer Language and recommended by W3C in

2003 (W3C, 2002). It uses XLink to point to specific data part within the XML

document. This means that XPointer query should starts with the URI of the

document followed by “#” sign which indicates the starting of the XPointer

query which is actually an XPath query with some extra functions.

- NEXI
Stands for Narrowed Extended XPath I is an XML query language that follows

the steps of XPath with some modifications. First, the NEXI retrieval engine

designed to deduce the semantics from the query in reverse to XPath which has

predefined semantics. Furthermore, NEXI extended the use of the contains()

function, which is used by XPath to indicate an element that is contain a specific

content, to be about() function to indicate the element to be about the content.

This adjustment allows NEXI to deal with fuzzy queries. NEXI has been used

for several purposes, such as question answering, multimedia searching, and

searching heterogeneous document collections. (Trotman and Sigurbjornsson,

2005)

2.3 Types of Queries

Queries are questions written by users to search, change or retrieve a specific

piece of information from different types of files such as text, image, or database

files. Depending on the query functionality, they can be categorized into three

types. The first type is the selection queries which are responsible for selecting

and retrieving the relevant document or sub-documents and returning the results

to the user. The action queries are the second type. These queries implement a

29

specific action on the selected file or document, such as delete, add, or update a

piece of information. The third type is the aggregate queries which find the

statistical amount for the selected attributes such as average, max, min ...etc.

Table 2-3: Query types

Query type Description XPath Example

Simple

queries (SQ)

Retrieve part of the

document according to

general specification

List countries names

//countries/country/name

Criteria

queries (CQ)

Retrieve part of the

document according to a

specific criterion.

List countries with less than 10 million

population

//countries/country[population <

10000000]

Conjunctive

queries (JQ)

Retrieve part of the

document according to

conjunction of two or more

criteria.

List industrial countries with less than

10 million population

//countries/country[economy=”industry”]

and //countr[population < 10000000]

Range

queries (RQ)

Retrieve information

according to a range

between given minimum and

maximum values.

List countries with population between 6

million and 15 million

//countries/country[population >

6000000] and

//countries/country[population <

15000000]

Vague

queries (VQ)

Retrieve information when

there is no Boolean matching

between the user’s query

and the relevant XML

document (Stasiu et al.,

2005; Rajpal et al., 2007).

List countries with population between 6

million and 15 million

/country/population between(6000000,

15000000)

Depending on their complexity, selection queries can be categorized into five

main types. Table 2-3 lists these types and describe their features supported by

an example for each type and its equivalent XPath query (written in Italic in the

table). The amount of the retrieved information varies according to the query’s

30

level of complexity such that the simplest query retrieves general information

while the more complex query tries to retrieve more specific information.

Since vague queries are the central issue in this research, the following

section provides a brief description of such queries and how they can appear in

information retrieval domain.

2.4 Vague Queries

XML query languages force the users to follow their rigid rules to write a

syntactically true query. This process is not easy to be maintained even for

expert users (Huh et al., 2000). Moreover, in order to retrieve the required

information these languages require previous full knowledge about the

document’s schema what is considered to be difficult to ordinary users. If the

query does not follow the semantic rules of the querying language or it does not

meet the document’s schema, null information will be retrieved because these

query languages use Boolean conditions wherein a condition is either true (exact

match) or false (no match) (Campi et al., 2009). On the other hand, handling the

fault-tolerant for the user’s query makes it easier for the user to retrieve

approximate information when vague conditions appear in the query (Zhao and

Ma, 2009).

Vague queries are those that occur when exact matching queries fail to

retrieve the required information (Fuhr, 1999; Bodenhofer and Küng, 2001;

Zhang and Kankanhalli, 2003; Dutta et al., 2009). In this case the vague query

needs to be generalized to retrieve the relevant information and rank this

information in the bases of their relevancy. Vague queries can be cause by

several factors:

1. Schema: although XML Schema or its DTD are very important when

creating and developing the document, their absence during the

retrieving process leads to null information retrieved since all XML

query languages demand complete knowledge over them. Even if the

schema exists, it is difficult to figure out the exact structure of its XML

document (Sakr, 2009; Al-Hamadani et al., 2011).

31

2. Users: there are two main kinds of XML retrieval users, the experts and

the naïve. The experts have the ability to write syntactically true queries

depending on their knowledge of the rules of the query language and

have the ability to navigate the document’s schema and write the

appropriate query. However, different kinds of XML schema available

such as XML Schema, DTD, and RNG, and even expert users are only

aware of one or two of them. On the other hand, the naïve users have low

experience in the rules of the language and in the schema navigation. The

latter case could produce vague queries which has spelling errors in

either the structure or the content of the document, different case used in

the query and in the original document, or out of order or weak path

(Florescu et al., 2000; Campi et al., 2009).

3. The query Language: all XML query languages do not have the ability to

retrieve approximate answers according to a user’s query. Moreover, the

functions in the query languages sometimes do not meet the user

requirement. All these restrictions in the languages can lead to vague

queries (Buneman et al., 2003; Norbert and Kai, 2004).

4. Unknown document: whenever a query is submitted, it should specify the

XML document(s) that has the required information. If the user does not

know the exact document or the information is disseminated in more than

one document, a vague query occurs (FAZZINGA et al., 2009).

2.5 Chapter Summary

This chapter described the origins of the XML technique and its

development. It showed the importance of the XML documents and their usage

as well as their drawbacks. Since these documents have a special structure, this

chapter provided a brief description of this structure and the different types of

documents. To deal with XML documents, many APIs have appeared. This

32

chapter listed the well known APIs and described their features and differences.

Because this research lies in the field of XML retrieval, the chapter highlighted

different kinds of XML retrieval techniques and query languages used to retrieve

parts of the entire XML document. The main features of all types of queries are

illustrated with the focus being on vague queries.

33

CHAPTER 3 State of the Art Technology in
Compressing and Querying XML Documents

Since this research consists of two main parts, the XML compressor and the

vague query processor, this chapter discusses the main XML compression

techniques in its first part. It will highlight the advantages and disadvantages of

these techniques and discusses the differences between them. The second part of

this chapter will focus on the vague query processors used to retrieve

information from XML documents.

3.1 XML compression techniques

Recently, large numbers of XML compression techniques have been

proposed. Each of which has different characteristics. This section discusses the

differences between these compressors and their main features.

XML compressors can be classified into two classes either to be XML-blind

or XML-conscious compressors. XML-blind or general purpose compressors

deal with the XML document as a traditional text document ignoring its

structure and apply the general purpose text compression techniques to compress

them. These techniques can be classified into two main classes (Salomon, 2007),

either to be statistical or dictionary based compressors (Augeri et al., 2007;

Augeri, 2008). The statistical or the arithmetic compressors represent each string

of characters using a fixed number of bits per character. PPM, CACM3, and

PAQ are examples of this kind of compressors (Cleary and Witten, 1984;

Moffat., 1990; Alistair et al., 1998). On the other hand, dictionary compression

techniques substitute each string in the input by its reference in a dictionary

maintained by the encoder. WinZip, GZIP, and BZIP2 are examples of this

compression class (WinZip, 1990; GZip, 1992; BZip2, 1996).

34

Table 3-1: The main differences between XML-conscious and XML-blind compressors

XML-conscious compressors XML-blind compressors

Information about XML documents is usually

available in schema which can be optimized by

XML-conscious compressors to get better

compression.

Cannot take advantage of the schema to get

useful information about the file.

They utilize the structure of XML document

and the type of the data inside.

They do not take in consideration the entire

file structure or data types.

Some of them abridge the original XML tree in

a summary or compact tree for better ratio.

They cannot exploit redundancies in the XML

tree structure.

Most of them are powerful in compressing

small or large files.

They do not efficiently compress small files

that can be used in transactions for e-business.

(Hung, 2009)

On the other hand, XML-conscious compressors try to utilize the structural

behaviour of XML documents in order to achieve better compression ratio and

less time in comparative with the XML-blind type. Table 3-1 sets the main

differences between the two aforementioned compressors types.

The main theory of data compression, which described in (Shannon, 1948), is

the formulation of the entropy rate (H) which indicates the limit to lossless data

compression. The value of (H) depends on the probability of each symbol in the

information source. The most popular entropy value is:

 (Shannon, 1948) (2)

Where, is the probability of the symbol .

In this paper, Shannon proved that the compression ration cannot exceed the

value of (aH), where (a) is the number of symbols in the source.

Since XML are heterogeneous data, the theory of XML compressors is to

separate the data from the structure, separate the data into containers according

to the type of the data, and apply a general purpose compressor for each

container. This process can lead to produce an optimal compressor over

heterogeneous data. (Liefke and Suciu, 2000) developed the entropy value for

XML compression to be:

35

 (Liefke and Suciu, 2000) (3)

Where, are the entropies for the sources, and are

the probabilities of these sources.

XML-conscious compressors can be classified according to their ability to

querying the compressed documents into two main sub-classes; these are

queriable and non-queriable compressors. While the queriable compressors have

the ability to retrieve information from the compressed XML document without

the need to completely decompress the document, the non-queriable XML

compressors are used to compress the XML documents for archival purposes

only and they achieved better compression ratio than the queriable compressors.

3.1.1 Queriable XML Compressors:

The main goal of this type of compressors is to provide the ability to the

compressed version of the XML document to be queried without complete

decompression them. The compression ratio for these compression techniques is

lower than the blind-XML or the non-queriable techniques.

Table 3-2: The main limitations of some queriable XML compressors.

Compression

technique

Limitations

XGrind o Requires partial decompression to handle range and partial-match queries.

o Lower compression ratio comparative with other compressors.

XPress o Limited experimented data corpus to depth 5 and 6 only and large documents (>12MB).

o Handles only exact-match, partial-match, and range queries.

XQzip o Ignoring IPs and comments from being compressed.

o Critical in choosing the appropriate block size to balance between the good compression ratio

and efficient query processing.

o The need for partial decompression to handle string matching queries.

XQueC o Using too many structures with their pointers which yield to huge space overhead.

o Long compression and decompression time.

XSAQCT o Lossless compressor since it does not taking into consideration the order of the attributes in

an element.

o Queries only the exact match queries.

36

SXSI o Designed to increase the querying speed.

o The compression ratio has not been tested.

o Supports only navigational queries and string matching predicates.

However, these techniques are important when dealing with resource-limited

applications and mobiles. Some of these techniques are homomorphic

compressors, which mean that the compressed file is a semi-structured one. In

the next section, a brief description of some of these techniques will be given,

and Table 3-2 explains their main limitations.

The first queriable compressor is XGrind by (Tolani and Haritsa, 2000). This

technique replaces the elements and attribute names with the letters “T” and

“A” respectively, followed by a unique identifier which represents the

substituted element or attribute name. Moreover, it replaces the end tags with

“/” sign. The data part of the document is encoded using Huffman encoding. For

the purpose of querying the compressed document, XGrind’s query processor

finds the simple path to check whether it satisfies the path in the given query.

The main drawback with XGrind is that while it has the ability to process exact-

match and prefix-match queries on the compressed documents, a whole range of

or partial-match queries require partial decompression to be handled.

In order to solve XGrind’s partial decompression problem, Xpress (Min et

al., 2003) uses the reverse arithmetic encoding method to encode the label paths

of the XML document as a distinct interval in [0.0, 1.0) . Using the relationships

between these intervals will allow for the ability to evaluate path expressions

more efficiently on the compressed XML document. Furthermore, by using this

method, XPress uses path-by-path matching instead of element-by-element

matching that has been used in XGrind. To encode the data part of the XML

document, XPress uses different compression techniques depending on the type

of the data and without the need to the human interference. (Min et al., 2009)

Because XGrind and Xpress are homomorphic, the relationship between the

size of the compressed document and the size of the original one is linear. To

solve this problem (Cheng and NG, 2004) proposed a new technique (XQzip)

that depends on extracting the Structure Index Tree (SIT) from the tree structure

of the original document. The SIT depth is non-linear to the structure tree which

37

makes this technique accomplishes higher compression ratio and faster query

evaluation.

Instead of using (SIT), XQueC (Arion et al., 2007) uses the structure

summary tree in order to efficiently stores the XML documents. The space

needed to store the structure summary (SS) is:

 (Arion et al., 2007) (4)

This represents the summation of the space needed to store a tag node plus

the space needed to store all its successive nodes. Furthermore, instead of using

hash table to store the tags and attribute names, XQueC used the structural

identifiers, which has been used in some querying techniques (Al-Khalif A et al.,

2002; Grust, 2002; Halverson et al., 2003; Paparizos et al., 2003) in order to

uniquely identify a node in the XML tree. This technique considered to be the

first one that uses XQuery as a query language.

In their work, (Müldner et al., 2009) created an annotation tree to succinctly

store the structure of the XML document and use the containers to store the data

part of the document. Their compressor, named XSAQCT, has two versions; the

first was dependent on the XML Schema and the second was schema-free. They

showed that the first version is better than the second from the standpoint of

compression ratio even though it was slower.

Finally, (Arroyuelo et al., 2010) proved in their proposed SXSI compressor

that the XPath queries can be performed better when using an indexing

technique to compress the XML document. This technique is based on

producing a labelled tree from the XML Tree structure and then indexing this

tree into a bit array and compressing the data part of the document using a

general back-end compressor. Although the compression ratio of SXSI is not

calculated, the querying time and the retrieving quality are better than traditional

retrieving techniques.

38

Table 3-3: A comparison of different compression techniques.

Compression

technique

XML-

Conscious

Schema

dependant

queriable Compression

technique

Back-end

compressor

Average

compression
ratio

WinZip

(WinZip,

1990)

No No No Reducing

algorithm+

AES

encryption

- 0.48

BZip2

(BZip2, 1996)

No No No Burrows-

Wheeler+

Huffman

- 0.24

GZip

(GZip, 1992)

No No No LZ77+

Huffman

- 0.36

XMill

(Liefke and

Suciu, 2000)

Yes No No Dictionary-

based

Gzip, Bzip2,

PPM

0.55

Millau

(Girardot and

Sundaresan,

2000)

Yes Yes No Dictionary-

based

GZip, deflate 0.58

xmlppm

(Cheney,

2001)

Yes No No Statistical

models

PPM 0.57

dtdppm

(Cheney,

2005)

Yes Yes No Statistical

models

PPM 0.58

XWRT

(Skibinski et

al., 2007)

Yes No No Dictionary-

based

Gzip, LZMA,

PPM

0.54

RNGzip

(League and

Eng, 2007)

Yes Yes No Deterministic

automaton

Tree

Gzip 0.58

LXC

(Bonifati et

al., 2009)

Yes No No words

abbreviation

- 0.59

XGrind

(Tolani and

Haritsa, 2000)

Yes No Yes Dictionary-

based

Huffman 0.57

Xpress

(Min et al.,

2003)

Yes No Yes Dictionary-

based

Reverse

encoding

0.57

XQZip

(Cheng and

NG, 2004)

Yes No Yes Dictionary-

based

Gzip 0.66

XQueC

(Arion et al.,

2007)

Yes No Yes Binary

encoding

Depending

on the type of

data

0.68

XSAQCT Yes Yes Yes Tree-size Bzip2, gzip, 0.80

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard�
http://en.wikipedia.org/wiki/Encryption�

39

(Müldner et

al., 2009)

elimination PAQ8

SXSI

(Arroyuelo et

al., 2010)

Yes No Yes FM indexing BWT n/t

Table 3-3 shows the main differences between the various compression

techniques mentioned above. It is clear that the compression ratio of all XML-

conscious compressors are better than traditional blind-compressors and the

compression ratios of the queriable compressors are still less than those of non-

queriable techniques.

Figure 3-1 demonstrates the distribution of the compression techniques over

the years, where NQC and QC refer to the non-queriable and queriable

compressors respectively. It shows that the years 2006 and 2007 witnessed an

increasing amount of compression for both queriable and non-queriable

techniques. The overwhelming rise in the number of queriable-XML

compressions in the years 2008 and 2009 reflects the importance of this type of

compressors.

Figure 3-1: The distribution of the compression techniques over the
years

0

1

2

3

4

5

NQC QC

2000-2001

2002-2003

2004-2005

2006-2007

2008-2009

2010-2011

40

3.2 Processing Vague Queries techniques

In order to elevate the flexibility of querying XML documents, many

researchers have produced varied approaches to meet that need.

In their work (Damiani and Tanca, 2000) proposed a technique to solve

what they called “blind queries” which refers to the queries submitted with the

absence of XML schema. This technique first transforms the XML document

into a labelled graph and provides each node a number which represent the

importance of this node in the XML document. The graph then is expanded to

perform a fuzzy graph. To process the vague queries, it creates a graph for the

query and performed a similarity match between the two graphs.

According to the importance of approximate retrieval, (Schlieder, 2001)

proposed a query language named approXQL since the existing XML query

languages have the ability to answer queries according to exact matching only.

This language is designed to answer vague queries on data-centric XML

documents by encoding them into a labelled tree. It uses three pointers to encode

each node of the document’s tree by associating it with its pre-order number, the

number of its ancestors, and the pre-order number of its most right leaf. To

answer vague queries, it makes useful node transformation on them which are

insertion, deletion and renaming. Each transformation is associated with its cost

and the results that require less transformation cost are the most relevant once.

Instead of expanding a query language, (Amir-Yahya et al., 2002) proposed

a new algorithm that depends on converting the XML document and the user’s

query into a tree-like structure and perform some relaxation process on the latest

tree by deleting, inserting and renaming the nodes in that tree to be matched with

the original XML document. Each of these processes attached with a score in

order to compute the Top-k relevant answers. This technique solves the problem

of generating large amount of sub-queries when using the query re-writing

algorithm which has been used in approXQL. In this paper, the authors debate

applying the traditional IR techniques to retrieve approximate answers and they

prove that those techniques are not sufficient enough when dealing with XML

documents, however, converting the document to a tree-like structure and

applying approximate matching on it is more appropriate.

41

In 2004, FleXPath technique has been proposed by (Amer-Yahia et al.,

2004). FleXPath depends on merging the XPath query language that has exact

matching with full text search that has approximate matching. First, the query is

converted to a tree and used it as a template to find the approximate matches

within the XML document. The query relaxation process used by FleXPath

depends on deleting a structural predicate if at least one of its nodes does not

belong to the document structure and the deletion process will not affect the tree

structure of the query. Furthermore, this technique performs more relaxation

such as contains-relaxation by replacing the parameter of the contains() function

with its ancestor, tag-relaxation by replacing a tag with its super tag, value-

relaxation, and type-relaxation.

Instead of relaxing the query, (Lalmas and Rolleke, 2004) transforms the

query to a conjunction query by adding an “OR” between the query’s path and

its predicate and changes each “AND” in the query with an “OR” to increase the

recall precision. In this technique the XML document passes into two

probabilistic transformation processes. In the first pass, each element, attribute

name, attribute value and element value is attached with a probability value to

indicate the importance of this element in the whole document using

probabilistic object-oriented logic. The output from the first pass is transformed

into probabilistic relational algebra expressions. This technique changes the

XML document into a new one which is much bigger than the original.

In the same year, (Mandreoli et al., 2004) proposed a new approach for

answering approximate queries to retrieve all the relevant parts of the XML

document not only the exact matching. This approach finds the syntactic

similarity between the XML Schema and the user’s query, written in XQuery

query language, and rewrites the query to match this Schema. It works with the

XML Schema instead of working with the XML document directly in order to

retrieve relative information from a repository of documents. Although this

technique has the ability to retrieve 90% of the relevant information, it shows

conflicts when the root node of the different schemas are the same as the root

node in the query.

In 2006 (Li et al., 2006) proposed FLUX to process only range queries in

their fuzzy appearance. It uses B+-tree in order to identify the relevant leaf

nodes to the given user’s query. The path from the root to the relevant leaves is

42

used as signatures to be matched with the path in the query to determine their

relevancy. Using the Bloom filter, FLUX converts the path in the query and the

path signatures into hash tables and compare between them to extract the most

relevant paths. The implementation process for FLUX is limited only to two

XML documents and the 100 tested queries include only the year and date range

queries with random selections. Their test explains that FLUX perform good

retrieval with higher speed that other relative techniques.

While FLUX tried to process fuzzy range queries, TIJAH (Mihajlovic et al.,

2006) tried to process only two vague cases in NEXI query language. This

technique finds the list of synonyms for each element name in the user’s query

using WordNet “A Lexical Database for the English Language”, and it uses

these synonyms as new keywords to be searched in the XML document by

rewriting the query using the new elements. Furthermore, this technique

generalizes the path in the query in order to look for the elements in the whole

XML tree.

Depending on the aforementioned FleXPath approach, (Campi et al., 2009)

proposed a new technique called FuzzyXPath that expands XPath query

language to include fuzzy cases. The main purpose of this work was to

determine the degree of similarity between two trees by providing a weight to

each node to determine its importance within the document. The weight is

calculated depending on the level of the node within the XML document and the

number of its children. FuzzyXPath adds new functions to the list of available

functions in XPath such as SIMILAR to find the similarity between the given

node and the nodes in the document, and CLOSE to find the similarity between

the given value and the data in the document. It provides more flexibility in path

structure by adding NEAR and BELOW functions.

In our previous work (Al-Hamadani et al., 2009) we proposed a new

technique to process vague queries by decomposing it into CAS and CO queries

and then apply the normal retrieval process for each part. The results from the

retrieval process are combined again to obtain the final results. The technique

applied on health care record and it shows good retrieval precision.

(Fredrick and Dr.G.Radhamani, 2009) proposed a framework to extend

XQuery language to include fuzzy queries. They tried to generalize the FLWOR

to include natural language words, such as good, bad, etc. to get more precise

43

results. It depends on the fuzzy-set theory by (Zadeh, 1965) to transfer each

fuzzy word to a range of values and then retrieve the most relevant parts from

the document.

3.3 Problem Identification

The previous sections list several compression techniques that have the ability

to process different kinds of queries. Table 3-4 lists all the discussed queriable

compression techniques and shows the types of queries that can be processed by

each technique. Some of the compressors require partial decompression to the

compressed XML document in order to process some of these queries.

Table 3-4: Query types with the compression techniques process each.

Compression

techniques/

query types

Simple

queries

(SQ)

Criteria

queries

(CQ)

Conjunctive

queries

(JQ)

Range

queries

(RQ)

Vague

queries

(VQ)

XGrind
* * *

Xpress
* *

XQZip
*

XQueC
XSAQCT

SXSI
* Partial decompression required

It is clear that the entire existing compressors do not have the ability to

process vague queries since this type of queries is complex and needs intensive

research to resolve it.

For this reason, the research in this thesis is focused on how to handle

different types of vague queries in retrieving information from compressed XML

documents.

44

3.4 Chapter Summary

This chapter illustrated the main types of general purpose compressors and

focused on XML compression techniques which rely on two types, either as

queriable or non-queriable techniques. Since this research is dealing with a

queriable compressor, this chapter concentrated on the existing techniques, listed

their main features and the differences between them and the types of queries in

the process. Finally, the chapter also demonstrated different techniques that have

the ability to process vague queries and the key differences between them.

45

CHAPTER 4 XML Compressing and Vague
Querying (XCVQ) Design

As shown in the literature review from the previous chapter, there are a

good number of studies in the field of compressing XML documents and

querying the compressed version without the need to fully decompress.

However, vague queries, which are one of the most important query types, have

been processed to retrieve information from raw XML documents and not from

compressed ones.

Depending on the SDM as illustrated in Figure 1-1, the design of the

complete system should be made, followed by its implementation which can be

seen in Appendix-B. This chapter illustrates the design architecture of the XCVQ

(an XML Compressing and Vague Querying) which has the ability to compress

the XML documents and use the compressed files in order to retrieve

information according to vague queries. It starts with the main architecture of the

system followed by the design of each of its parts, namely XCVQ’s compressor,

Decompressor, and the query processor.

4.1 System Architecture

As illustrated in Figure 4-1, the XCVQ system consists of two main stages.

The first is designing a new XML compression technique which converts the

normal XML documents to a compressed version. The second is designing a

retrieving technique that processes the XPath vague queries in order to retrieve

the relevant information from the compressed document accordingly.

46

The design of the XCVQ does not rely on the XML Schema or the DTD of the

document. This is due to several reasons:

1. The main purpose of designing XCVQ is to process vague queries which

are usually written, as illustrated in a previous section, by inexperienced

users who may not want to have another technology linked with their

documents.

2. Even if the schema for a document exists, it could not have been

accessible to the user.

3. Since the main purpose of any compressor is to reduce the storage

memory and the transition bandwidth, XCVQ saves the amount of

memory required to store the schema.

As illustrated in the design of the XCVQ, all the compressed XML documents

are stored in a repository which is going to be used in the retrieving process. To

the best of our knowledge, XCVQ may well be considered to be the first

retrieving technique that has the ability to retrieve information from more than

one XML document without requiring the pre-specification of the documents

needed to be retrieved and without dependence on the document’s schema. This

XML
Documents

XCVQ-
Compressor

Compressed
Files Repository

XCVQ-Query
Processor

Retrieve Doc. to
the user

Figure 4-1: Preliminary Architecture of XCVQ

47

approach helps users retrieve more relative information no matter which

documents contain this information. The complete design of the XCVQ is

illustrated in Figure 4-2.

The following sections demonstrate the design of each part of the system

starting with XCVQ-Compressor (XCVQ-C), passing by XCVQ-Decompressor

(XCVQ-D), and ending with XCVQ-Query Processor (XCVQ-QP).

4.2 XCVQ-C Design

XCVQ-C compressor takes an XML document as the input and creates the

compressed version from this document by passing through several steps. An

Relevant
information

Figure 4-2: The complete design of XCVQ

XPath
query XCVQ

Query
Processor

XML
Document

XCVQ Compressor

XML Analyser (SAX)

Data Structure

Path-
Dictionary

Gzip
compress

Structure
Abridgment

Containers

Compressed
XML

Document

Structured-Tree

48

example in Figure 4-3 from (W3Schools.com, 2006b) will be used in the

following sections in order to simplify the exact process of each step.

4.2.1 Creating the Structured-Tree & its Abridgment

As illustrated in Figure 4-2, the first step in compressing the XML

document is to create the structured-tree using the SAX parser. This parser scans

the XML documents only once and it cached several events such as start-

document, start-element, end-element, and end-document. Section 2.2.2 contains

more details about this parser and its advantages. During this parsing process the

complete path-dictionary was created and separates the data part of the XML

document from its structure to be abridged to the structured-tree. The structured-

tree for the running example is shown in Figure 4-4. The data under each root-

leaf path are stored in containers linked to that path.

49

Each data item is accompanied with a number IDorder that represents the

order of this item within the document (the number between the brackets in

Figure 4-4). IDorder counts each start element, data value, attribute name,

attribute value and end element. According to this number, each node is

uniquely identified for the purposes of decompression process and in the

querying process. Previous XML compressors used two numbers for each node

in the structured-tree to identify this node uniquely. These numbers represented

by the pre-order and post-order traversal of that node [IDpre, IDpost] (Cheng and

NG, 2004; Arion et al., 2007; Arroyuelo et al., 2010) which required:

<CATALOG>
<CD no="1">

 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>

 </CD>
<CD no="2">

 <TITLE>Hide your heart</TITLE>
 <ARTIST>Bonnie Tyler</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>

 </CD>
<CD no="3">

 <TITLE>Romanza</TITLE>
 <ARTIST>Andrea Bocelli</ARTIST>
 <COUNTRY>EU</COUNTRY>
 <PRICE>10.80</PRICE>
 <YEAR>1996</YEAR>

 </CD>
<CD no="4">

 <TITLE>When a man loves a woman</TITLE>
 <ARTIST>Percy Sledge</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Atlantic</COMPANY>
 <PRICE>8.70</PRICE>
 <YEAR>1987</YEAR>

 </CD>
 <CD no="5">

 <TITLE>Black angel</TITLE>
 <ARTIST>Savage Rose</ARTIST>
 <COUNTRY>EU</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1995</YEAR>

 </CD>
<CD no="6">

 <TITLE>1999 Grammy Nominees</TITLE>
 <ARTIST>Many</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.20</PRICE>
 <YEAR>1999</YEAR>

 </CD>
 </CATALOG>

Figure 4-3: An XML example

50

 (5)

Where represents the number of bits needed to store the structured-tree

that contains N nodes. While the number of bits required to store the same

structured-tree in XCVQ-C is shown in equation (6).

 (6)

Since XCVQ-C uses only one number to store a node, the number of bits

required to store a single node is . In this stage XCVQ-C saves half the

number of bits required to store the structured-tree.

Figure 4-4: The structured-tree for the example in Figure 4-3

4.2.2 Creating the Containers

XCVQ-C creates the containers from the structured tree, as seen in Figure

4-2. First each node is replaced with a number that represents the entry of that

(0)
CATALOG

(1)

CD

(2)

NO

(3) "1"

(4) "2"

(5) "3"

(6) "4"

(7) "5"

(8) "6"

(9)

TITLE

(10)Empire
Burlesque
(11) Hide your
heart
(12) Romanza
(13) When a man
loves a woman
(14) Black angel
(15) Grammy
Nominees

(16)

ARTIST

(17) Bob Dylan
(18) Bonnie Tyler
(19) Andrea
Bocelli
(20) Percy Sledge
(21) Savage Rose
(22) Many

(23)

COUNTRY

(24) USA
(25) UK
(26) EU
(27) Atlantic
(28) EU
(29) USA

(30)

PRICE

(31) 10.90
(32) 9.90
(33) 10.80
(34) 8.70
(35) 10.90
(36) 10.20

(37)

YEAR

(38) 1985
(39) 1988
(40) 1996
(41) 1987
(42) 1995
(43) 1999

51

0 CATALOG
1 CD
2 NO
3 TITLE
4 ARTIST
5 COUNTRY
6 PRICE
7 YEAR

/0/1/@2 (3) "1"(4) "2" (5) "3" (6) "4" (7) "5" (8) "6"
/0/1/3 (10)Empire Burlesque(11) Hide your heart(12)Romanza(13) When a man loves a

woman(14) Black angel(15) Grammy Nominees
/0/1/4 (17) Bob Dylan(18) Bonnie Tyler(19) Andrea Bocelli(20) Percy Sledge (21) Savage

Rose(22) Many
/0/1/5 (24) USA(25) UK(26) EU(27) Atlantic(28) EU(29) USA
/0/1/6 (31) 10.90(32) 9.90(33) 10.80(34) 8.70(35) 10.90(36) 10.20
/0/1/7 (38) 1985(39) 1988(40) 1996(41) 1987(42) 1995(43) 1999

(a)

(b)

Figure 4-5: Creating containers process. (a) the path-Dictionary. (b) the container.

node’s name in the path-dictionary. The structured-tree is traversed to create the

containers. Each container has an index and data set. The path from the root to a

leaf is used as index to the container and all the data under that path are the data

set to this container.

For the running example, the path-dictionary and the containers are

illustrated as in Figure 4-5, (a) and (b) respectively.

4.2.3 Compressing the Containers

After preparing all the containers and replacing the element’s names in the

containers with their entry in the pathDictionary, now the contents of the

containers should be compressed using a back-end compressor. To do this,

XCVQ-C uses two compressors to make comparison between them, LZW and

GZIP compressors.

The granularity used by XCVQ-C is container/path, which means that after

all the data parts of the document are settled in their appropriate containers, the

back-end compressor is applied to compress each one of the containers

separately. The decision made to choose this granularity is towards achieving a

52

balance between the compression ratio and the decompression process required.

When dealing with back-end compressors, the higher the amount of data, the

better is the compression ratio achieved. At the same time, this amount of data

should not be the entire data part of the document, since they need to be

decompressed in order to answer queries concerning them, so the technique

needs to minimize the amount of data being decompressed. The previous XML

compression techniques used different granularities to compress the XML

documents using one of the back-end compressors, as shown in Table 4-1.

Table 4-1: Compression granularity comparison.

XML compression
technique

Compression
granules

XGrind Value/tag

XPress Value/path

XQzip Blocks

XQueC Container item/tag

XSAQCT Container/tree-

structure

SXSI -

XCVQ Container/path

- LZW Compression Technique

This is one of the dictionary-based lossless compressors which developed in

1984 from LZ78 by Lempel, Ziv and Welch (Salomon, 2007). It has been used

in UNIX as a program compressor in 1986 and it is still being used by GIF, TIFF

and PDF files to compress images (Murray and VanRyper, 1996). The tokens in

LZW are pointers to their entries in the dictionary which starts with the first 256

positions occupied by the first 256 ASCII characters before any other entry.

Although it performs good compression ratio it suffers from problems. All

the pointers to the dictionary should be larger than 8-bit since the first 256

53

entries are occupied from the beginning. This makes these pointers to be at least

3-bytes to accommodate all the entries in a document. Moreover, this technique

is considered to be slow since its progress is one character at a time.

- Gzip Compression Technique

This is another example of dictionary-based lossless compression software

which is based on Deflate compression algorithm. This software used by many

applications such as HTTP protocol, the PNG (Portable Network Graphics),

PNG images, and PDF files. The Deflate algorithm was designed in 2003 by

combining the LZ77 and Huffman algorithms (PKWare, 2003; Salomon, 2007).

Deflate uses different block sizes in order to compress the input data. The size of

the blocks is determined according to the available memory and the size of the

data. This algorithm provides three modes for each block, (1) No compression

when the file is already compressed or it is random; (2) A fast mode that uses

two fixed code tables in the encoder and they will not been written in the

compressed file; and (3) A powerful mode that uses several code tables

generated by the encoder and they should be written in the compressed file.

4.3 XCVQ-C Algorithms and Their Correctness

Since putting the complete compressing process in one algorithm could

not be very clear, the designed algorithm is separated into three sub-algorithms.

The separation process is made depending on the main parts of the XML

document: start-element or attribute name, end-element, data, and end-

document. This section illustrates the design of the algorithms in each of the

previous XML parts and the formal correctness proof of each one of them. The

process of correctness proof depends on specifying the set of preconditions P:{

P1, P2, ..., Pn} and the postconditions Q:{ Q1, Q2, ..., Qn} and the algorithm A

such that [ref]. The algorithm is considered to be true is it terminates and

all the postconditions are true upon completion.

54

4.3.1 startElement algorithm

This algorithm in Figure 4-6 is processed whenever a start element or an

attribute name occurs in the XML document. In this algorithm, each element or

attribute name (eName) encountered in the XML document must be added to the

list of path-dictionary if it is not added before (lines 6-8). The index of (eName)

in the path-dictionary is used from now on instead of the element’s name itself

to be added to the structured-tree (lines 11-14). When there is a value in data

this means that the algorithm is dealing with an attribute. In this case, the

attribute value alongside with its order is added to the leaf of the current path in

the Structured-Tree (lines 16-17).

1. Algorithm startElement(String eName, String data)

2. let pathDictionary=[i0, i1, ..., in]

3. let structured-Tree=[j0, j1, ..., jm]

4. let pathStack=[kp, kp-1, ..., k0]

5. let IDOrder= the current order

6. if (eName pathDictionary)

7. pathDictionary=[i0, i1, ..., in] eNamen+1

8. Q”= n+1

9. else

10. Q”= q where iq =eName

11. pathStack=[kp, kp-1, ..., k0] [Q”p+1]

12. currentPath k0 + k1 + ...+ kp

13. if (currentPath structured-Tree)

14. Add currentPath to structured-Tree

15. IDOrder++

16. if (data is not empty)

17. Add (IDOrder,data) to the leaf node of [j0, j1,

 ..., jm]

18. End.

Figure 4-6: (startElement) algorithm

55

To proof the formal correctness of this algorithm, the preconditions and the

postconditions should first be specified:

P:{ eName=a, data=b are two strings,

pathDictionary=[i0, i1, ..., in]=c represents the current

pathDictionary,

structured-Tree=[j0, j1, ..., jm]=d represents the current structure-

tree,

pathStack=[kp, kp-1, ..., k0]=e represents the current path elements

stored in a stack}

Q: {a c,

a e,
e d,

In case of attributes, b d}

Correctness:

{eName=a, data=b, pathDictionary=c, structured-Tree=d, pathStack=e}
if (eName pathDictionary)
 {a c, data=b, pathDictionary=c, structured-Tree=d, pathStack=e}
 pathDictionary=[i0, i1, ..., in] eNamen+1
 Q”= n+1
 {a c, data=b, pathDictionary=c, structured-Tree=d, pathStack=e}
else
 Q”= q where iq =eName
 {a c, data=b, pathDictionary=c, structured-Tree=d, pathStack=e}

pathStack=[kp, kp-1, ..., k0] [Q”p+1]
{a c, data=b, structured-Tree=d, a e}

currentPath k0 + k1 + ...+ kp
if (currentPath structured-Tree)
 Add currentPath to structured-Tree

 {a c, data=b, e d, a e}
IDOrder++
if (data is not empty)
 Add (IDOrder,data) to the leaf node of [j0, j1,
..., jm]

 {a c, b d, e d, a e} = Q

56

4.3.2 endElement algorithm

The algorithm in Figure 4-7 is processed when the end of an XML element

encountered which means that there is a piece of data ready to be inserted in a

leaf node of the structured-tree (if that element holds data). The suitable current

path can be known from the contents of the pathStack and the data should be

added in the leaf node of that path.

P:{ eName=a, data=b are two strings,

pathStack=[kp, kp-1, ..., k0]=c represents the current path elements

stored in a stack,

structured-Tree=[j0, j1, ..., jm]=d represent the current structured-

tree}

Q: {b d}

Correctness:

{eName=a, data=b, pathStack=c, structured-Tree=d }
If data null
 {eName=a, data=b, pathStack=c, structured-Tree=d }
 Add (IDOrder,data) to the leaf node of [kp, kp-1, ..., k0]

 { b d }= Q

1. Algorithm endElement(String eName, String data)

2. let pathStack=[kp, kp-1, ..., k0]

3. let structured-Tree=[j0, j1, ..., jm]

4. If data null

5. Add (IDOrder,data) to the leaf node of [kp, kp-1, ...,

k0]

Figure 4-7: (endElement) algorithm

57

4.3.3 endDocument algorithm

When the whole XML document traversed, the algorithm in Figure 4-8 is

processed. First the complete pathDictionary should be added to the output

compressed file (line 7). The second step is to create the containers from the

structured-tree and fill them with the compressed data (lines 6-10).

P :{ pathDictionary=[i0, i1, ..., in]=a represent the complete
pathDictionary,
structured-Tree=[j0, j1, ..., jm]=b represent the current structure-
tree,
F = }

Q: {a F, N Containers F }
Correctness:

{PathDictionary=a, structured-Tree=b F= }

Add pathDictionary to F
{a F, structured-Tree=b }
For all the N branches in structured-Tree

1. Algorithm endDocument ()

2. let pathDictionary=[i0, i1, ..., in]

3. let structured-Tree=[j0, j1, ..., jm]

4. let F be the compressed file =

5. Add pathDictionary to F

6. For all the N branches in structured-Tree

7. index= Collect all the nodes [j0, j1, ..., jk]

8. data= the contents of the leaf node for the path

[j0, j1, ..., jk]

9. data = GZipCompress(data)

10. Add a Container(index, data) to F

11. End.

Figure 4-8: (endDocument) algorithm

58

 {a F, structured-Tree=b }
 index= Collect all the nodes [j0, j1, ..., jk]
 {a F, structured-Tree=b, index=path nodes}

data= the contents of the leaf node for the path [j0, j1,
..., jk]

 data = GZipCompress(data)
 {a F, structured-Tree=b, index=path nodes, data is
compressed}

Add a Container(index, data) to F

{a F, structured-Tree=b, a container F}
end

{a F, structured-Tree=b, N Containers F }=Q

4.4 XCVQ-D Design

As shown in Figure 4-6, to decompress the compressed XML file, XCVQ-D

first applies the back-end decompression technique, either LZW or Gzip, to

decompress only the contents of all the containers in order to get the data shown

in Figure 4-5 for the running example.

The second step is to reconstruct the XML document from the indexes and

the contents of the containers, and the path-dictionary. The main operation here

is to determine the order of each element, attribute, and data value within the

XML document. This order is the IDorder which is accompanied with the data in

the containers but it should be checked against the number of data items written

in the decompressed XML document so far. To check the consistency of

the order, XCVQ-D uses equation (7) such that:

59

Definition-1: If XCVQ-D has a piece of data [()d], where denotes

the IDorder accompanied with the data in a container, is the

ID order which denotes the order of the data written so far in ,
then the new order of D should be calculated by getting the

difference between () and the () taking into consideration the

number of the elements and attribute names still not written in

, such that:

 (7)

Where:

: The number of elements and attribute names written in .

: The number of elements and attribute names in the index of

the container having this data.

Then the value of Corder is checked and a performance made as

shown in equation(8).

 (8)

Index-1

CD1

Index-3

CD3

Index-2

CD2

Index-n

CDn
 D

at
a

D
ec

om
pr

es
si

on
 T

ec
hn

iq
ue

G

zi
p

| L
ZW

Index-1

D1

Index-3

D3

Index-2

D2

Index-n

Dn

Path-Dictionary

XM
L

R
e-

co
ns

tru
ct

or

XML
Document

Figure 4-9: Architecture of XCVQ-D

60

If Corder equals to (0) this means that the current IDorder is

consistent with the number of elements and attribute names in .

Otherwise, the difference between the current path in and the

index path for the current container should be added to before

adding the required data.

Since the decompression method depends on the existence of data, the

resulted decompressed XML document is lossless from the data side while the

dummy nodes (the element that has no data but consists of an open tag and a

close tag) could be lost. This case appears in documents that are converted from

a database system with poorly structured documents.

4.5 XCVQ-D Algorithm and its Correctness

The algorithm in Figure 4-10 illustrates the process of XCVQ-D which takes

the pathDictionary and the compressed containers as its parameter list. The main

idea of the decompression algorithm is to look for a data value which has the

minimum IDOrder and put it in the decompressed file in its appropriate place.

From the design of the XCVQ-C the first data value in each container always has

the minimum order within this container, the process of looking for the

minimum order will check only (n) item, where (n) represents the number of

containers instead of searching all the data in the containers. This process

reduces the time required to decompress the containers to O(n) instead of

O(n×m) where m represents the number of data items in each container.

If this piece of data is the first data value in the XML document (line 9)

then, all the path’s elements in the index of the container holding this data are

pushed in a stack which represent the current working path and add these

elements (or attribute names) to the new XML document () as an open tags

(lines 10-12).

61

Before adding the data to the output file, a consistency check is made, by

following the instructions in lines 16-19, where ({}) means set difference

between the contents of the stack and the index path. If there is no consistency

(line 17) then the difference between the stack content and the index path is

added to the output file as losing tags and then the piece of data is added to the

output file. In every addition to the output file, the value of (dataOrder) is

updated (lines 12, 19, and 21) to check the consistency between them each time.

After adding the data to the output file, this data alongside with its order is

deleted from the container. This process is done to keep the order of the first

data items in all the containers in their minimum values and to release the

memory storage used by these data values.

62

This process is continued until all the containers are empty, then all the

content of the stack is added to the output file as closed tags to finish the new

decompressed XML document.

1. Algorithm XCVQ-D (pathDictionary [P0, P1, ...,Pm], containers

[C0, C1, ...,Cn])

2. let currentPathStack=[Sk, Sk-1, ...,S0]

3. let dataOrder= number of elements, attribute names, and data

values in the outputFile

4. While (the containers are still having data) Do

5. for i=0 to n

6. let minDataSet[(O0,D0), (O1,D1),... (On,Dn)] first

 element in each container

7. minOrder=min(O0, O1,..., On)

8. minData Di from (minOrder, Di)

9. if currentPathStack=

10. currentPathStack Ci.index

11. open tags of Ci.index

12. dataOrder=dataOrder+ number of open tags added

13. }

14. Else

15. currentPathStack [Ci.index]-[currentPathStack]

16. dataCons=

17. if dataCons 0

18.

19. dataOrder=dataOrder+ number of close tags added

20. Di

21. dataOrder=dataOrder+1

22. remove (minOrder, Di)

23. }

Figure 4-10: XCVQ-Decompression algorithm

63

The next paragraph discuss the correctness of the decompression algorithm

by guarantee the one-to-one mapping from the compressed document to the

decompressed document.

The core of the decompression technique is to make sure that each part of

the compressed XML document should return to its place in the original XML

document. This is done in XCVQ by using the IDOrder which counts the order of

each single part of the original document, such that:

Odata(IDOrder)=Ddata(IDOrder)

Where, Odata and Ddata represent a single piece of data in the original and the

decompressed XML documents, respectively.

As seen in Figure 4-5, the only Odata(IDOrder) stored in the compressed

document are for the data part of the document to save the storage required. For

instance, in the first container indexed (/0/1/@2) in Figure 4-5, the first data

item (“1”) has its Odata(IDOrder)=3. This means that there are three pieces should

be transferred to the decompressed XML document before transferring this part

of data. These pieces are the three nodes in the container’s index (/0, /1, and

/@2).

To make this balance between Odata(IDOrder) and Ddata(IDOrder) in the

decompression algorithm, the dataOrder variable was used (to represent

Ddata(IDOrder)) to count every single piece of data written in the XML document.

Before adding a data value to the decompressed XML document, the

decompression algorithm checks if it is in its right place (i.e. if

Odata(IDOrder)=Ddata(IDOrder) after taking onto consideration the expected number

of pieces from the). Otherwise a process is required to solve this inconsistency

between the two values and as follows:

1. Find the difference between the two IDOrders

D=Odata(IDOrder) - Ddata(IDOrder)

64

This means that there are D pieces should be added to the decompressed

file first.

2. Add the D pieces of data that are in the current working path but not in the

container’s index.

3. Update Ddata(IDOrder)

Ddata(IDOrder)= Ddata(IDOrder)+D

4. Since

D=Odata(IDOrder) - Ddata(IDOrder)

Then

Ddata(IDOrder)= Ddata(IDOrder)+ Odata(IDOrder) - Ddata(IDOrder)

Ddata(IDOrder)= Odata(IDOrder) Which is the target of the decompression

technique.

4.6 XCVQ-QP Design

The design of the query processor, as illustrated in Figure 4-7, consists of

various stages. The output(s) from each stage is used as input for the other

stages. The role of each stage and its design are discussed in the next sections

using the same running example in Figure 4-3.

4.6.1 XPath Query

The current XPath query language does not have the ability to answer vague

queries, since its work is based on a restricted Boolean matching; either the

query matches part(s) of the existing document and retrieves those parts, or no

retrieval at all is achieved if there is no match. XCVQ-QP uses XPath as a query

language after expanding the original language to give it the ability to solve

vague user’s queries. This expansion includes adding more flexibility in both

path matching and data value matching in addition to adding some functions to

the list of available XPath functions.

65

- Path Matching Expansion

To increase the flexibility of XPath axes matching, XCVQ-QP provides

some generalization to the XPath query that gives the users of XCVQ-QP the

ability to retrieve the most relevant information to their queries (Grust, 2002;

Amer-Yahia et al., 2004; Campi et al., 2009). These generalizations are the

following:

1. Eliminating the use of the recursive descent sign (//) and replacing it with

the child operator (/) sign. This elimination increases the flexibility of

XCVQ as shown in the following examples:

Example (1): to retrieve all the (TITLE) elements from the XML

example in Figure 4-3, an XPath query should be

(/CATALOG/CD/TITLE). In this case the user should have a complete

idea about the XML schema for that file to indicate the complete

path from the root to the (TITLE) element. To retrieve the same

information, XCVQ query is either (/CD/TITLE) or (CATALOG/TITLE),

which is simpler than XPath queries and does not need any

previous knowledge about the schema.

Example (2): if the user need the (TITLE) element for the CD

with (no) equals to “2”. The XPath query is

(CATALOG/CD[@no="2"]/TITLE) while the XCVQ query is

(/CD[@no="2"]/TITLE) which is again much simpler than XPath

query.

2. If the query tries to retrieve sibling elements, then using XPath would

need to write two separate queries or one query with two parts

connected by logical (and) operator.

66

Example (3): The elements (TITLE) and the elements (YEAR) are

both siblings in the XML tree. The XPath query to retrieve all

the data from the two elements is (CATALOG/CD/TITLE |

CATALOG/CD/YEAR), while the XCVQ query to retrieve the same

information is (/TITLE/YEAR).

Example (4): if the user interesting in retrieving all the (TITLE)

elements only for the CD published after (1990). The XPath

Relevant
Container

Figure 4-11: The architecture of the query processor.

XCVQ-C

Sub-Queries

XPath Query

Query
Decomposer

 Sub-queries Relaxation

Ranking

Compressed
XML

Repository

Decompressing

Relevant
XML

document(s

XML
Document

results

67

query is (/CATALOG/CD/TITLE and /CATALOG/CD[YEAR>1990]), while

the relevant XCVQ query is (/TITLE[YEAR>1990]).

3. If the order of the path is not arranged properly, XPath query does not

have the ability to retrieve information from the specified document,

while XCVQ does.

Example (5): using the same requirements of Example (3), XPath

user should follow the same path from the root to the required

element, while XCVQ query could be written as follows:
(TITLE/CD/YEAR)

4. Using XPath queries, the user should follow the case of the letters, since

the XPath query is case sensitive language. This feature adds more

complexity to the user and to the XML creator who has to follow those

specific rules. XCVQ queries are case insensitive, which retrieve the

information from the XML document even if the case is different.

Example (6): all the XCVQ queries in Examples (1-5) can be

written as following:
cd/TITLE
/CD[@no="2"]/title
/TITLE/year
title[year gt 1990]
title/cd/YEAR

5. When the system does not find a specific element within the XML

compressed database, it tries to look for elements that are similar to it.

For that reason, XCVQ-QP uses a string-similarity algorithm (White,

2008) in order to match any misspelling in the elements or attribute

names. If an element within the path is written in a wrong way, then the

system will look for the nearest spelling element in the retrieved

documents such that the similarity ratio should not be below 40%. After

many experiments, we noticed that this percent is the best for retrieving

the required element. If this number is less than 40, then non-related

elements could be retrieved.

68

 The choice of string-similarity algorithm is made on the ground that it

meets most of XCVQ-QP needs since this algorithm has the following

features:

1. If two strings have minor differences, they are considered to be similar

(ex: heap, heard).

2. If two strings have the same words but in different order, they are

considered to be similar (ex: data base management system, managing

data base).

As shown in Figure 4-12, the string-similarity match algorithm

takes two strings, and for each string it produces sets each of which has

two adjacent letters in that string. Then the similarity is computed as in

line (5) to determine the similarity ratio between them.

6. XCVQ-QP has the ability to retrieve information from more than one file

(FAZZINGA et al., 2009) even if the user does not specify these files in

prior. As a simple example, if the user has the query (title/year) then s/he

might get information about the titles and year of publication for CDs,

movies, books or journals. Moreover, XCVQ-QP has the ability to

compare the results from one file with the data from another file and

retrieve the results accordingly.

Example (7): Suppose the following user query:

(catalog/book/author/bookstore[author="Erik Ray"]). This query is

considered to be a merged from two queries,

(catalog/book/author="Erik Ray") and (bookstore/book/author="Erik

1. Algorithm string-similarity (String st1, st2)
2. let st1= [s1s2s3 ... sn] and st2= [c1c2c3 ... cm]
3. st1Set= [s1s2][s2s3][s3s4]...[sn-1sn]
4. st2Set= [c1c2][c2c3][c3c4]...[cm-1cm]

5.

6. End.

Figure 4-12: String-similarity match algorithm

69

Ray"). Each one is to retrieve all the books for the author’s name

("Erik Ray") from two separate XML documents that follow

different schemas.

Example (8): suppose the following user query:
(cars/car/price lt carType/Ford[model eq 2008]/price)

In this query the user is interesting in looking for all the cars that

their pricees are less than (lt) the 2009 Ford car price. XCVQ-QP

first looks for the smallest price (x) in the path

(carType/Ford[model eq 2008]/price) and then retrieve all the

information from the path (cars/car/price) which are less than

(x). Notice that the two paths are from two separate XML

documents.

- Data Value Matching Expansion

In order to make more expansion on XPath queries to retrieve more

relevant data from the XML document, XCVQ-QP adds a set of functions that

deal with the data part of the document (Campi et al., 2009). Although some of

these functions are adopted to be used in structural retrieval as well. The

extended functions with examples of their use are illustrated in the next section.

1. Synonym(x): This function is created to be used to retrieve information

from both the structure and the data parts. It has only one parameter x

and returns a list of synonyms for x.

To do so, XCVQ-QP uses the WinterTree thesauruses engine

(WinterTree, 2006)which provides a wide multipurpose dictionary. This

engine provides the user the ability to modify its dictionary by adding new

words with their synonyms or adding more synonyms to the existing

words.

If the list of synonyms is (S1, S2, …, Sn), then XCVQ-QP processes (n)

queries by replacing each Si instead of the function call.

Example (9): Suppose the query /cd/title/synonyms("time"). XCVQ-

QP replaces this query with 3 queries:

70

/cd/title/duration

/cd/title/interval

/cd/title/date

It is clear that the use of the function in this example is for

structure retrieving purposes.

Example (10): Suppose the query /cd/country eq

synonyms("Britain"),which retrieves information from the data part of

the XML document. This query is replaced with two queries:
/cd/country eq "UK"

/cd/country eq "The United Kingdom"

2. Similar(x): This function uses the String-Similarity algorithm, shown in

Figure 4-8 in order to retrieve information according to one of the

following conditions:

a) If the user has doubt on the spelling of a string as shown in Example

(11).

b) If the similar strings to x are required as shown in Example (12). This

function works on both the structure and the data parts of the XML

documents depending on the previous conditions.

Example (11): In the query /cd/title/similar(artest), the word artest

has spelling error. The role of XCVQ-QP here is to find the similar

element name from the retrieved documents and retrieve the required

information accordingly. This query is replaced with /cd/title/artist

for the running example.

Example (12): In the query /cd/year/title eq similar("keep your

heart") for the running example, the data required is similar to "keep your

heart" which is replaced by XCVQ-QP with cd/year/title eq "hide
your heart".

- Function Set Expansion

The list of available functions in XPath query language includes string,

Boolean and number functions. XCVQ-QP adds four functions to the number

functions set.

71

1. Average(x): the avg() function in XPath provides the user the ability to

get the average of a list of numbers specified as a parameter list for the

function. This function is expanded by XCVQ-QP to provide the user the

ability to specify an element from the XML document and find the

average of the numerical values under that element.

Example (13): The query /cd/title/average(price) retrieves all the data

values of the title element and the average of the numbers of the price

element.

2. Median(x): This function is used to find the median for the list of

numbers in the selected path.

Example (14): If the query /catalog/cd median(year)is applied, the user

will get the median number for all the data values of the year element.

3. Between(x,y): Instead of using and logical operator to retrieve

information lying between two different intervals, XCVQ-QP introduce

this function. It has two parameters which represent the data interval.

Example (15): The query /cd/title[price=between(9.0,10.0)] retrieves all

the title elements if and only if the value of its price element is

between the given interval.

4.6.2 Query Decomposer

This part of the XCVQ-QP is responsible for decomposing the XPath query

into several sub-queries. This stage consists of two decomposition stages, as

shown in Figure 4-9. Each stage has specific roles and results in a set of sub-

queries as in the following:

Decomposition Stage -1: The main purpose of this stage is to specify the

relevant documents from the compressed XML repository. This case occurs

72

when the user’s query does not specify the exact XML document to retrieve

information from it. XCVQ-QP decomposes this query into (n) queries, where

(n) represents the number of the relevant documents.

Definition- 2 (relevant document): If is

the set of elements in the user’s query, and

 is the set of all the compressed XML

documents in the repository. is considered to be

relevant document if , where is the path-

dictionary for the specified document. If so, add to the

relevant repository and add to .

According to the definition above, a XML document is considered to be

relevant if it has one or more of the query elements in its path-dictionary. All the

relevant documents are collected in a small repository for

relevant XML documents each of which is accompanied with its relevant sub-

query . All the elements and attribute names in are replaced

with its location in the path-dictionary of the relevant document. This process is

done to prepare the sub-queries for the second decomposition stage. As an

Figure 4-13: The design of XCVQ-Query Decomposer

S
ta

ge
-1

(D

oc
um

en
t R

el
ev

an
cy

)

S
ta

ge
-2

(C

on
ta

in
er

 R
el

ev
an

cy
)

.

.

Compressed
XML

Repository

XPath
Query

.

.

.

.

.

.

73

example, if a sub-query is: title/cd/year from the running example, it is

replaced with /3/1/7 where 3, 1, and 7 represent the entries of title, cd,

and year respectively as shown in Figure 4-5.

In the case when the user’s query is submitted to retrieve information

from a specific document, then the query does not pass by this stage and the list

of sub-queries has only the original query, i.e. and the related

document’s repository contains only the specified document.

Decomposition Stage -2: After specifying the relevant documents, the role

of this stage is to specify the relevant containers within these documents. This

process causes further decomposition to the sub-queries

Definition-3 (Relevant Container): Given

represents the set of n containers for a relative document and

each of these containers has an index with elements

, and represents the set of m

elements in the sub-query accompanies C, to select the

relevant container follow the steps:

 the last element in the set

 Add to to denote the list of relevant containers

 if , copy and add it to the list of the

elements in to denote a new sub-query.

−1

Repeat the above steps until the entire element in are copied

to a new sub-query.

At the end of this stage only the relevant containers taken from the relevant

documents are uploaded into the memory for ranking process. Each of these

containers is accompanied with is sub-query as shown in Figure 4-13.

74

4.6.3 Query relaxation

In this stage, the list of sub-queries is being relaxed to determine the

relevancy of each of these queries to the document. To do so, XCVQ-QP relaxes

all the members of according to each of the containers in to compute the

cost of this relaxation process for ranking purposes. To reach this goal, XCVQ-

QP adopts different kinds of relaxation processes. These types and their costs are

listed below:

1. Node insertion:

This type of relaxation is done by inserting one node or more in the list

of available query nodes. To do so, XCVQ-QP compares each container

of the relevant XML documents with its sub-query.

Definition-4 (Node-Insertion): Given a container has an

index with elements and given

 represents the set of m elements in the sub-

query accompanies the ith relevant document and jth relevant

container. The relaxed sub-query =

The cost of the insertion node(s) in a single sub-query is specified as follows:

(9)

2. Node renaming:

After completing the first stage of relaxation, each sub-query is going to

pass through the following procedure:

Let be the set of elements in

the current sub-query, be the set

75

of elements of the index for the current container

associated with .

For all ,

if then find the value of SimilarityRatio

by applying the string-similarity(

algorithm in Figure 4-8 such that .

if (SimilarityRatio>50%) then

 replace with

changes++

The cost of the node renaming process is calculated as

follows:

(10)

3. Node deletion:

After inserting all the required nodes from the index of a container, the

extra nodes from the query should be removed.

Definition-5 (Node-deletion): Given a container has an

index with elements and given

 represents the set of m elements in the sub-

query accompanies the ith relevant document and jth relevant

container. The relaxed sub-query .

The cost required to delete node(s) from a sub-query is:

76

(11)

The deletion cost of all the sub-queries will never be equal to 1 (which

means all the elements in the query are deleted), since all these queries

passed by the insertion relaxation first and all the irrelevant containers

are dismissed.

4. Order relaxation:

This is the last relaxation process which arranges the order of the nodes

in each resulted sub-queries. The cost of this relaxation is shown in

equation (11) such that changes represent the number of changing in the

order of the elements in the sub-query.

(12)

Example (16): For the running example, the lists of containers indexes are as

follows:

Suppose the following vague query:

Q1=document(“cdcatalog.xml”)/title/cd/artest[year between(1990,

1996)]

77

Since this query specifies the XML document to retrieve information from it, it

is going to pass through stage-2 directly to specify the related containers. The

following list illustrates the related containers alongside with the sub-query

accompanied it:

The insertion relaxation process updates the sub-queries to be as follows:

The cost of insertion the required nodes are as follows:

The node renaming relaxation process updates the sub-queries to be as follows:

78

The only sub-query affected by this stage is and the cost of this process is as

follows:

The node reordering relaxation process updates the sub-queries to be as follows:

The only sub-query affected by this stage is and the cost of this process is as

follows:

4.6.4 Ranking

After relaxing all the sub-queries, the process of finding the similarity

between the containers’ index and the sub-queries is computed according to the

following equation:

Definition-6 (Query Similarity): To find the similarity between the

given query (Q) and the relevant XML document, first the cost of

all the relaxation process, that has been done on (i) sub-queries,

should be found as follows depending on the previous equations

in (9), (10), (11), and (12):

(13)

79

Then the similarity is computed as follows:

 (14)

All the sub-queries are sorted according to their value of , the

higher similarity the sub query has, the higher order it takes.

Example (16): continue

To find the similarity of the query Q1, first find the value of as

follows:

And the similarity between the query Q1 and the pre-specified XML document
is:

4.6.5 Decompression

During all the previous stages no decompression required except when the

query has to retrieve information about the data part of the document. In this

case only the relevant containers were decompressed to answer the sub-query

having that part of data.

80

To retrieve the relevant parts of the XML document to the user, all the

retrieved, ranked containers were decompressed using the same decompression

technique discussed in section 4.4 in this chapter.

Although there may be more than one relevant containers retrieved from one

or more XML documents, all these containers were combined and decompressed

into one XML document to perform one tree instead of a forest of multiple XML

trees.

If the user needs more queries to be processed on the resulted document,

then this document should be compressed first to be within the XML repository

and then it can be used in its compressed version. This feature is called

composition and is borrowed from XQuery, in which the retrieved information is

stored in a temporary XML file for further retrieving.

4.7 Chapter Summary

This chapter sets forth the main features in the design of the XCVQ system

which has the ability to compress and/or decompress an XML document without

losing its data. The significant feature of XCVQ is its ability to retrieve

information from the compressed version according to different kinds of queries

and especially vague queries. This required an expansion of the existing XPath

queries through adding certain features to provide it with the ability to answer

imprecise queries.

81

CHAPTER 5 XCVQ Testing, Evaluation and
Discussion

Since the testing and evaluation processes are part of SDM, this chapter

illustrates the detailed testing of XCVQ and its ensuing evaluation. Because the

XCVQ model consists of three main parts, XCVQ-C, XCVQ-D, and XCVQ-QP,

the testing strategy will involve testing each stage on its own. This chapter

describes the testing of the three parts of the XCVQ model.

5.1 Testing Strategy

For the purposes of testing the complete model, the testing strategies are to

be specified first. The next sections describe the behaviour testing strategy used

(state graph) and then the functional testing strategies (white and black boxes).

5.1.1 Testing XCVQ’s Behaviour

For the purposes of testing the complete model, first the state diagram was

defined to describe the behaviour of XCVQ and to implement the State Graph

testing strategy (Beizer, 1990; Farrell-Vinay, 2008).

82

The following is the detailed description of each state of the state graph in

Figure 5-1:

State-A: This state is the GUI of the designed model. It represents the starting

state in order to deal with all the other states. This state has three outputs:

Out-1: to compress an XML document, go to state-B.

Out-2: to decompress an XML document, go to State-C. This output is

true only if (Out-1) is performed at least one time.

Out-3: to write a query, go to State-D. This output is true only if (Out-

1) is performed at least one time.

State-B: This state represents the process of compressing an XML document. It

has two outputs:

Out-4: to decompress an XML document, go to State-C.

Out-5: to submit a query, go to State-D.

State-C: This stage represents the process of decompressing an XML document

and it has two outputs:

Out-6: return to the starting state.

Out-7: submit the decompressed document to the user, go to State-I.

Figure 5-1: XCVQ State Graph

A B

I

C

D

E

F

G

H

1

2

17
3 5

4

8

7

6

12

11 10

9
15

14

13
18

16

83

State-D: this is the most important state in the system which represents the query

submission and checking its syntax. It has the following five outputs:

Out-8: if the submitted query has syntactical error(s), return to the same

stage to resubmit another query.

Out-9: if the syntactically true query specifies the exact XML document

to retrieve information from, go to Stage-E.

Out-10: if the syntactically true query does not specify the exact XML

document to retrieve information from, go to Stage-F.

Out-11: take the out-of-errors query and the relevant XML document(s)

as inputs to State-G.

Out-12: from this stage the user can return back to the starting state.

State-E: This state is responsible on retrieving the required XML document

which specified by the query. It has only one output:

Out-13: carry the unique XML document which is specified by the

query to State-D.

State-F: In the state, the set of relevant XML document is specified depending

on the submitted query. This state has one output:

Out-14: carry the set of the relevant XML document(s) retrieved from

the repository to State-D.

State-G: In this state, the query is processed and the required information is

retrieved from the relevant XML document(s). It has three outputs:

Out-15: to ignore the current query, return to State-D.

Out-16: if more retrieval process required for the retrieved document,

go to State-B to decompress the retrieved document first.

Out-18: to submit the results of the querying process to the user, go to

State-I

State-H: This state returns the retrieved information as an XML document to the

compressor to compress it and add it to the XML repository for further querying

process and it has only one

84

Out-17: if the user required more querying on the retrieved information,

go to State-B.

State-I: This state is the final state where the resulted document(s) are submitted

to the user.

5.1.2 Testing XCVQ’s Structure & Functionality

Both White-Box and Black-Box testing strategies are used in order to test

the structure and the functional of XCVQ respectively. In the White-Box testing

strategy all the subroutines in the system were tested to check every single

statement. Depending on this testing strategy, different kinds of XML

documents were derived to guarantee that all paths, logical decisions, loops, and

data structures have been tested at least once. Firstly, the complete XCVQ

system was divided into three main sub-systems: XCVQ-C, XCVQ-D, and

XCVQ-QP in order to make it easier to follow the white-box testing strategy.

Secondly, each sub-system was divided into small units to follow the unit white-

box testing type. For each unit three white-box tests were made:

(1) Conditional test: In this test all the condition statements were tested

checking the values of the Boolean variables and the correctness of

the conditions.

(2) Data lifecycle & data structure test: the second white-box tests the

lifecycle of the variables, their initializations, their value changing,

and their expiring. It also checks the created data structures by testing

their boundaries, applicability, initializations, and updating their data.

(3) Loop testing: In this box all the loops in each unit were tested. The

test includes the control variable initialization value, the truth of the

control condition, the change in control variable, and the guarantee of

its termination.

While the structure of the designed system is crucial to the White-Box

testing strategy, it has no role in the Black-Box strategy since this strategy is

85

aimed at observing the outputs of the designed system for certain inputs. The

main aim of this strategy is to test all the functional requirements, and hence it

attempts to derive the necessary data for achieving that aim. In this chapter, the

intensive test for the chosen XML data corpus and the independent test were

both achieved.

During both previous strategies, a huge amount of XML data was used to

cover different data ratios, depths, resources, and sizes. The overall tested data

amounted to more than 1500 MB with 45 XML documents (see Appendix-C)

5.2 Testing Factors

To test the performance of the XCVQ, all the factors listed in Table 5-1 were

used. The following is the complete description of these factors and their

importance in the testing process:

Table 5-1: XCVQ Testing factors

Sub-system Testing factor

XCVQ-C - Structure Compression Ratio

- Structure Compression Time

- Compression Ratio

- Compression Time

XCVQ-D - Structure Decompression Time

- Decompression Time

XCVQ-QP - Functionality test

- Performance Test

86

 Compression Ratio (CR): this factor is used to test the difference

between the original XML file size and the compressed file size

as illustrated in Eq.(15) (Salomon, 2007). It is used in two stages.

In the first stage, only the structure part of the document was

compressed and in the second stage the data and the structure

parts were compressed. Depending on this factor, the relation

between CR and the Data Ratio (DR) and the relation between

CR and the size of the file were found. For this purpose a corpus

of XML documents was used. Its complete description is

discussed in the next paragraph.

 Compression Time (CT): This factor is used to determine the time

required to compress each XML document in seconds (s) and to

specify its relation with the file size.

 Decompression Time (DT): This is the measure of the time

required to decompress the XML document in order to obtain the

original one. The effect of the file size on DT was obtained.

 Query Functional Test (QFT): The purpose of this test is to

determine the main types of queries that can be processed by

XCVQ-QP. For this purpose, a query benchmark was tested.

(15)

87

 Query Performance Test (QPT): This factor is used to determine

the time required to process each of the XPath query in the

benchmark and retrieve the relevant results.

All the time comparison factors shown in the following figures are scaled

by (log10) to make the figures clearer. All the negative values in these figures

mean that the actual time values were less than (1).

5.3 Data Preparation

To test the XCVQ model, a set comprising of different types of XML

documents has been chosen. These documents should have different sizes,

number of elements, number of nodes, the depth of the longest path, and the data

ratio (DR) which is calculated as follows (Sakr, 2009):

 (16)

Where is the data ratio for the XML document (d), (D) is the data, and

(Si) represents the size of the XML document.

According to their main characteristics, XML documents can be categorized

into three types (Maneth et al., 2008; Sakr, 2009):

1. Textual documents (TD): The DRd of this type of documents exceeds

70%. The structure of these documents is very simple. Books and articles

are examples of this type.

2. Structural documents (SD): In this type of XML documents, the DRd is

less than 30%. Baseball box score and line-item shipping are two

examples of this type.

3. Regular documents (RD): These documents have DRd between 40% and

60%. Relational databases are examples of this type.

88

 The complete descriptions of the XML corpus with all the required

information and the detailed description of all the groups in the corpus are listed

in Appendix-C.

5.4 Testing Environment

All the testing were carried out on a personal computer with Intel(R)

Core(TM)2 Due CPU processor that has the speed of 5.50 GHz. The RAM

memory of the tested environment is 4.00GB and 300GB of hard disk drive. It

has 32-bit Windows Vista operating system.

5.5 XCVQ-C and XCVQ-D Testing

The testing technique for the XCVQ-C is made in two stages. The first stage

is done by compressing only the structure of the XML document and creating

the path-dictionary without compressing the data part of the document. The

second stage is done by compressing the structure and the data parts to obtain

the final XML compressed document which will be used in the querying

process.

5.5.1 XCVQ-C and XCVQ-D Testing: Stage-1

The main purpose of this stage is to examine the effect of redundancy on

the structure of the XML document and its overall size. In this stage, the data

part of the document has not been compressed and thus keeps its original size,

while the structure part is abridged and replaced with the elements index and the

attribute name entries in the path-dictionary. The compressed XML document,

at this stage, contains the path-dictionary and the created containers except that

the data inside these containers are not compressed.

This test includes finding the Structure Compression Ratio (SCR),

specifying the Structure Compression Time (SCT) and its relationship to the size

89

of the XML document, as well as determining the Structure Decompression

Time (SDT) and its relationship to the size of the XML document.

Figure 5-2 explains the Structure Compression Ratio (SCR) for the XML

corpus. By keeping the data in its original size and compressing only the

structure part of each document, the resulted SCR is between 0.003 and 85.43

and the average SCR is 49.47. The value of SCR depends on the structure ratio

of each document, which is listed in appendix-D, and the repetition of the

schema in this document. This test explains the role of the redundancy in the

structure of the XML document.

Figure 5-2: SCR for the XML corpus

0
10
20
30
40
50
60
70
80
90

EX
I-G

eo
gC

oo
rd

EX
I-A

rr
ay

Sh
ak

es
pe

ar
e

XB
en

ch
-D

CS
D

-S
m

al
l.x

m
l

j_
ca

es
ar

EX
I-f

ac
tb

oo
k

XM
ar

k-
2

32
1g

on
e

Ya
ho

o_
Sh

op
pi

ng

EX
I-w

eb
lo

g

H
om

es
ee

ke
rs

W
as

hi
ng

to
n

Be
rk

el
ey

Sw
is

sP
or

t

M
on

di
al

Ba
se

ba
ll

Re
ad

Te
xa

s

En
W

ik
iQ

uo
te

En
W

ik
iN

ew
s

G
B-

m
et

a

En
W

ik
iV

er
si

ty

Structure Compression ratio (SCR)

90

Figure 5-3-(a) shows the relation between the size of the XML document (X)

and the structure compression time (Y), while Figure 5-3-(b) illustrates the time

(Y) required for decompressing the XML document and restoring the original

one. It is clear from the above figures that the relationships between the two

variables in both cases are expanding almost linearly. The correlation coefficient

between X and Y was r = 0.886607 in the compression case and r = 0.996626 in

the decompression case. These values indicate the strong positive relationship

between the size of the XML document in the one hand and the compression and

decompression time on the other. The actual SCR, SCT, and SDT for the

complete XML corpus are listed in Appendix-D.

-2

-1

0

1

2

3

4

0.
00

58
5

0.
02

53
9

0.
03

51
5

0.
09

27
7

0.
27

4

0.
59

8

1.
55

8

2.
52

6

3.
21

3

7.
52

9

15
.8

28

30
.7

99

81
.3

97

11
2.

76
1

13
1.

16
7

St
ru

ct
ur

e
Co

m
pr

es
si

on
 ti

m
e/

 S
ec

 (l
og

 s
ca

le
)

XML document size/MB

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

58
5

0.
03

02
7

0.
06

73
8

0.
27

4

0.
63

2

2.
22

6

3.
21

3

10
.5

78

24
.6

22

81
.3

97

11
3.

06
1

St
ru

ct
ur

e
D

ec
om

pr
es

si
on

 ti
m

e/
Se

c
(lo

g
sc

al
e)

XML Document Size/MB

Figure 5-3: (a) Structure Compression Time for the XML corpus and (b) Structure
Decompression Time for the XML corpus.

(a) (b)

91

5.5.2 XCVQ-C and XCVQ-D Testing: Stage-2

In this testing stage, the fully designed XCVQ-C and XCVQ-D were

tested. The main aims of this test is to determine the average compression ratio

for the XML corpus and the compression ratio for each of the documents, to

specify the compression and decompression time and their relationship to the

size of the XML document, and to generate the XML repository which is going

to be used in the testing of XCVQ-QP.

The compression ratio of the complete XML corpus is shown in Figure 5-4. The

resulted compressed file contains the path-dictionary and the containers after

compressing their data using Gzip back-end compressor. The minimum resulted

compression ratio is 68.51 for Richard II and the maximum is 93.52 for

Sweden-meta. The average compression ratio for the complete XML corpus is

78.45.

Figure 5-4: CR for the XML corpus

0
10
20
30
40
50
60
70
80
90

100

Compression ratio (CR)

92

Figure 5-5-(a) shows the compression time for the complete XML corpus

according to the size of the XML document while Figure 5-5-(b) shows the time

required to decompress the XML documents. Again, the relationship between

the compression/decompression time and the size of the XML document is

almost linear and the correlation coefficient between the compression time and

the XML document size is: r=0.971702, while it is r=0.888598 in the case of

decompression. This illustrates the strong positive relation between the two

tested variables. The complete tested files alongside with their CR, CT, and DT

are listed in Appendix-D.

5.6 XCVQ-C & XCVQ-D Evaluation

For the purpose of evaluating XCVQ-C and XCVQ-D, comparisons were

made between XCVQ and other competitive techniques. Depending on the

availability of the techniques and the XML corpus used in the testing of these

techniques, four queriable XML compressors were chosen for the purpose of

-2

-1

0

1

2

3

4

0.
00

58
5

0.
03

02
7

0.
06

73
8

0.
27

4

0.
63

2

2.
22

6

3.
21

3

10
.5

78

24
.6

22

81
.3

97

11
3.

06
1Co

m
pr

es
si

on
 T

im
e/

Se
c

(lo
g

sc
al

e)

XML Document Size/MB
-1

-0.5

0

0.5

1

1.5

2

2.5

3

0.
00

58
5

0.
03

02
7

0.
06

73
8

0.
27

4
0.

63
2

2.
22

6
3.

21
3

10
.5

78
24

.6
22

81
.3

97
11

3.
06

1

D
ec

om
pr

es
si

on
 T

im
e/

Se
c

(lo
g

sc
al

e)

XML Document Size

Figure 5-5: (a) Compression Time and (b) the Decompression Time for the XML corpus.

(a) (b)

93

comparison: XGrind (Tolani and Haritsa, 2000), Xpress (Min et al., 2003),

XQzip (Cheng and NG, 2004) , XQueC (Arion et al., 2007), and (Müldner et al.,

2009). The XML corpus used in the testing and the compression ratio for each

document is shown in Figure 5-6. The evaluation of the XCVQ includes

comparing the following factors: CR, CT, and DT.

It is clear that XCVQ-C achieved a better compression ratio than other

compressors except when dealing with high structural documents, since

XSAQCT achieved better ratio. But when dealing with querying the compressed

XML document, XSAQCT has the ability to answer only exact match queries

since it transfers the structure of the document into an annotated-tree which can

be compressed better than structured-tree. The average CR of the XCVQ-C is

considered to be the best between all the other techniques for the selected

documents, as listed in Table 5-2.

Table 5-2: Average CR for all the tested XML compressors.

XML compressor Average CR

XGrind 57.39
XPress 57.55

Figure 5-6: Evaluating XCVQ-C CR.

0

20

40

60

80

100

Shakespear SwissProt UW course
data

TreeBank LineItem NASA DBLP

%
 C

om
pr

es
si

on
 R

at
io

XGrind

XPress

XQzip

XQueC

XSAQCT

XCVQ

94

XQzip 66.95
XQueC 68.4

XSAQCT 80.02
XCVQ 81.85

As seen in Figure 5-7, the time required by the XCVQ-C to compress the

XML document was higher than the other compressors in most cases. This is

due to the SAX parser being used by XCVQ-C, which traverses the XML

document only once, during which time the complete containers and the

structured tree were constructed. While the time required to decompress and

regenerate the XML document, shown in Figure 5-8, was better than some of the

XML compressors.

Figure 5-7: Evaluating XCVQ-C CT

0

0.5

1

1.5

2

2.5

3

3.5

Co
m

pr
es

si
on

 T
im

e/
Se

c
(lo

g
sc

al
e)

XGrind

XPress

XQzip

XSAQCT

XCVQ

95

5.7 XCVQ-QP Testing

For the purpose of testing the performance of the XCVQ-QP, a XPath

benchmark is used from XPathMark (Franceschet, 2005) since it covers all types

of XML queries. The queries in this benchmark are divided into two main

categories either Query Functional Test (QFT) or Query Performance Test

(QPT).

5.7.1 QFT

XPath-FT queries are used to check the completeness and correctness of the

query processor and are grouped into five aspects. Table 5-3 illustrates these five

aspects. Since the main concern of XCVQ-QP is to process vague queries, only

the vague cases in each of the aspects are tested. Since the third aspect could not

be as vague, the testing process at this stage ignores this aspect. Furthermore,

Figure 5-8: Evaluating XCVQ-D DT.

0

0.5

1

1.5

2

2.5

3

Shakespear SwissProt UW course
data

TreeBank LineItem NASA DBLP

D
ec

om
pr

es
si

on
 T

im
e/

Se
c

(lo
g

sc
al

e)

XGrind

XQzip

XQueC

XSAQCT

XCVQ

96

one additional aspect was added to the existing aspects (Multi-File aspect) to test

the ability of XCVQ-QP to retrieve the required information even if it is

disseminated in more than one XML document.

Table 5-3: XPathMark-FT query benchmark

QFT concepts Description

Axes parent, descendant, preceding

Filters predicates

Node Test Comment(), text(), node()

Operators Relational operators (<, =,…) and Boolean

operators (and, or)

Functions String manipulating functions and

mathematical functions

Multi-File Retrieving information from more than one

XML document

Table C-2 in Appendix-C lists all the QFT concepts alongside with the

queries associated with each concept by applying the example XML document

in Figure 4-3 as a case study. All the listed queries were successfully processed

by XCVQ-QP and retrieve the required information.

5.7.2 QPT

The QPT queries test the exact time required to answer a specific query

(Franceschet, 2005). For this purpose, the same concepts in Table 5-4 were used

to test the performance of the XCVQ-QP by testing the time required to process

the set of queries for each concept and retrieve the information from a specific

XML document chosen from the used XML corpus with different sizes.

97

The testing results in Figure 5-9 includes all the concepts of the selected

benchmark after averaging the time required to process the set of queries within

each concept. These sets were applied to retrieve information from various XML

documents with different sizes. It is clear from the aforementioned figure that

the axes queries need less time to be processed than the other concepts. This is

due to the structure of the compressed XML document which requires searching

only the indexes of the containers to process these queries.

Since the queries belonging to the Filter concepts required partial

decompression only for the retrieved containers, this set of queries needs more

time than the queries in the first set. Because the set of queries in the Operation

concept needs partial decompression for the relevant containers plus filtering the

values in the retrieved information according to the given operation, they need

even more time to be processed. Finally, the set of queries containing function

calls require processing either the synonym or similarity of the given parameter

which needs the highest time among other concepts as these functions require

searching the dictionary or other similar data respectively.

Figure 5-9: Testing XCVQ-QP Querying time

0

20

40

60

80

100

120

140

160

180

Q
ue

ry
in

g
Ti

m
e/

Se
c

XML File Size/MB

Function

Operation

Filter

Axes

98

Another test was made to check the performance of the queries in the last

concept (multi-file). The test concludes that the time required to process a query

from that set was dependent on several factors such as the size of the relevant

documents, the number of relevant documents, and the size of the XML

repository. It could thus be concluded that these entire factors have a positive

relationship with the query processing time.

5.8 XCVQ-QP Evaluation

To evaluate XCVQ-QP, a test was first made to check the functionality of

the model and its capability to process different kinds of queries. All the existing

XML queriable compressors were tested to determine the types of queries each

compressor can process. All the existing queriable compressors have the ability

to process SQ, while some of them were designed to process specific types of

queries. As discussed before, XCVQ-QP has the ability to process the vague

queries plus all the other kinds of queries which renders it the only queriable

XML compressor with such a feature.

Another evaluation test was made to compare the time required to

process a query and retrieve the relevant information accordingly. Since each of

the previous XML compressors used a different set of queries and documents to

test their querying time, several tests were made to compare XCVQ-QP with

these compressors using their queries and XML document sets.

The evaluation tests were made to compare the querying time with

XGrind and Xpress, XQZip, and XSAQCT using the set of queries and the XML

documents listed in Appendix-E (Set-1) (Min et al., 2003), (Set-2) (Yang et al.,

2006), and (Set-3) (Müldner et al., 2009) respectively.

99

As declared in Figure 5-10, the time required to process the queries using

XCVQ-QP was less than the time required to process the same queries using

almost all the previous XML queriable compressors, except for the queries that

require data retrieval such as the queries in the filter concept. This is due to the

fact that XCVQ-QP needs to decompress the relevant containers in order to

retrieve the required information. The time of XCVQ-QP was even more than the

0

5

10

15

20

B1 B2 B3 B4 C1 C2 C3 C4 S1 S2 S3 S4

Q
ue

ry
 P

ro
ce

ss
in

g
Ti

m
e/

Se
c

Query Name

Xgrind

Xpress

XCVQ

0

5

10

15

L1 L2 L3 L4 L5 T1 T2 T3 T4 T5 S1 S2 S3 S4 S5

Q
ue

ry
 P

ro
ce

ss
in

g
Ti

m
e/

Se
c

Query Name

XQZip

XCVQ

0

5

10

15

D1 D2 L1 L2 S1 S2 P1 P2 U1 U2

Q
ue

ry
 P

ro
ce

ss
in

g
Ti

m
e/

Se
c

Query Name

XSAQCT

XCVQ

(c)

(b)

(a)

Figure 5-10: XCVQ Query processing time against (a) XGrind and Xpress, (b)
XQZip, and (c) XSAQCT.

100

other compressors when retrieving information from the textual XML

documents since the size of the containers in these documents were higher than

other types of documents.

The designed query processor is considered to be the first processor which

has the ability to retrieve information according to all types of queries from the

compressed XML documents. Comparing it with the techniques that retrieve

information from the original XML documents, XCVQ-QP covers different sides

of vague queries (path expansion, data value expansion, and function set

expansion). On the other hand, the previous techniques are dedicated to solving

only one side (path expansion as in (Grust, 2002; Amer-Yahia et al., 2004) and

or two sides (path expansion and function expansion as in (Campi et al., 2009)

or path expansion and data value expansion as in (Brisaboa et al., 2010).

5.9 Chapter Summary

In this chapter, extensive tests were carried out to check the performance

and functional abilities of XCVQ. In the compressor part of the model, the model

was tested using a corpus of XML documents that have different features. After

comparing the compression ratio with other XML compressors, XCVQ showed

better ratios in most of the tested documents and its average ratio was higher

than all other tested techniques. On the other hand, the compression time was

high and needs further development in the future. An independent test was also

made to test the compression ratio of XCVQ-C and the results of the tested data

are listed in Appendix-F.

From the decompression side, XCVQ-D was fast enough compared to the

existing techniques and the decompressed documents were lossy when there

were dummy elements in the XML document. The ratio of the dummy elements

and that of the structure loss are listed in Appendix-G.

Finally, XCVQ-QP was tested to check for its ability to retrieve

information according to several kinds of vague queries and other kinds of

queries. A benchmark of queries was chosen and tested for the functional and

101

the performance abilities of the designed model. The results were very

encouraging, since the model proved its ability to process different kinds of

queries in a competitive processing time.

102

CHAPTER 6 Conclusions and future work
This thesis introduced a new model which has the ability to compress an

XML document efficiently and retrieve information from the compressed file

according to vague queries and even various other types of queries. This chapter

will outline the main conclusions of the research as well as the main advantages

and limitations of the designed model. Finally, the chapter will also list possible

future trends in this research in terms of developing the proposed model.

6.1 Conclusion

As the importance of XML usage for storing and transferring data via the

World Wide Web becomes increasingly clear, there is a corresponding need to

compress the size of XML documents, dealing with them in their compressed

mode so as to make them accessible to devices with limited resources. When

these compressed documents are used by simple users, in a situation where there

is absence of schema, or if such a user has no exact idea of what s/he is looking

for, there should be a special technique available to adequately deal with these

types of queries. The questions had been raised by this research and their

answers are as follows:

1. Is it possible to design a new compression technique that has the

ability to compress the XML documents and achieve better

compression ratio without the need to the document’s Schema or

its DTD?

The answer to this question is XCVQ compressor. The design of

the model showed the best average compression ratio (78.45)

among the other XML queriable compressors without the need to

the XML schema to be available. This was due to several reasons,

such as: (1) limiting the storage of each element and attribute

name in the document to only one number, which represents the

103

order of that element or attribute in the XML document, instead

of being two numbers, and (2) increase the granularity of the data

to be compressed in order to perform better compression ratio.

Although this design issue increased the compression ratio, but it

affects the time required to compress the document by increasing

this time to be higher than the time require to compress these

documents using other techniques. However, the compression

process usually made only once, while the querying process can

be done hundreds of times to retrieve information from the

compressed files.

2. What is the influence of the structure redundancy on the overall

size of the XML document?

To answer this question, XCVQ Structure Compressor was

designed. In the compression process of the XML documents, the

research found the strong affect of the redundancy in the structure

of the document on its overall size. By succinctly storing the

structure part of the XML document and keeping the data part as

it is, the experiments showed good compression ratios which were

up to 85.43 and averaged 49.47 for the tested XML corpus. This

shows the big redundancy in the structure part of the document,

apart which is considered to be very important for several

purposes and retrieving information is one of them.

3. What are the main types of vague queries and when they can be

occur? Have the existing XPath query language the ability to

answer vague queries? If no, what is the required expansion that

should be made on XPath to give it this ability?

Vague queries are one of the important types of queries. They

occur in different situations and require special ways to be

processed since the existing query languages do not have the

ability to answer these queries. The XCVQ-QP can deal with

104

simple and complex queries by forcing each query to pass by two

decomposition stages in order to make it easier to retrieve

information from the relevant document(s) and then combine the

sub-results to be decompressed and submitted to the user. This

process required the expansion of XPath query language in

different sides: the path expansion, the data value expansion, and

the set of functions expansion. The time required to process the

queries are very competitive especially when dealing with

structure-based queries, since the compressed structure of the

document helps in accelerating the retrieving process.

4. How to determine the relevant XML document(s) from thousands

of documents without the need to scan them completely for time

saving purposes? And is it possible to retrieve information from

more than one XML document without the pre-specification of

these documents using one XPath query?

Instead of scanning the complete document to search for a

specific bit of data, XCVQ-QP uses the path-dictionary, which

contains all the elements and attributes names, to specify the

relevant documents from thousand of XML documents. In this

way, it is now possible to retrieve information from unspecified

document(s). While all the existing XML query processors

required the user to pre-specify the required documents to retrieve

information from them, XCVQ-QP has the ability to retrieve

information from one or more than one XML document without

the need to specify exactly which document could contain the

required information.

6.2 Recommendations

 The main purpose of designing XCVQ is to process vague queries

on compressed XML documents. For that reason, the first

105

recommendation for the model is to be used in cases where vague

queries could be submitted, such as when dealing with naive

users, where there is absence of schema, and when the required

information is scattered among many files.

 The model is recommended to be used in retrieving information

from XML documents when these documents have to be stored in

devices with limited resources. The required documents can be

compressed once and then queried several times with very limited

resources requirements.

6.3 Future Work

Several research issues can be explored to improve the model:

 The model in this research can be developed to convert XCVQ into a

complete XML management system with the ability to manage XML

document in its compressed stage. The management process includes

adding, deleting, or editing elements or attributes names. This

process does not require any decompression, since the change is only

made to the structure part of the document. The management process

can include editing in this part of the document. In this case, only the

container(s) with the required data should be decompressed using the

Gzip back-end decompressor. They could also be used for editing

the data and re-compressing the container(s).

 Another development is providing the ability to retrieve information

from XML documents written in languages other than English. This

could be done by adding a translator to translate any data part into

other languages and retrieve the information accordingly.

 The model can be enriched by adding a Natural Language Processor

that can convert a user’s query into a vague XPath query and then

106

retrieve the required information from the compressed XML

document.

 Remains to be fully implemented is the complete set of XPath

statements such as “for” and “if”.

107

Publications

 Baydaa Al-Hamadani, Joan Lu. Processing Vague Queries on Abridged

XML Documents. To be published in the journal of Philosophical

Transaction of the Royal Society.

 Baydaa Al-Hamadani, Joan Lu, and Raad F. Alwan. A new Schema-

Independent XML Compression Technique. Accepted for publication in the

International Journal of Information Retrieval Research, 2011.

 Nael Hirzallah, Dead Al-Halabi, and Baydaa Al-Hamadani. University

Grades System Application using Dynamic Data Structure. IJCSI Volume 8,

Issue 1, January 2011.

 Daed Halabi, Nael Hirzallah, and Baydaa Al-Hamadani. Dynamic Grading

System for Universities. 3rd International Conference on Advanced

Computer Theory and Engineering, 2010.

 Baydaa T. Al-Hamadani, Raad F. Alwan, and Joan Lu, XQPoint: A Queriable

Homomorphic XML Compressor, IEEE 6th International Conference on

Innovations in Information Technology. Al-Ain, UAE, Page 100-104.

December PP: 15-17, 2009.

 Baydaa T. Al-Hamadani, Raad F. Alwan, Joan Lu, and Jim Yip, Vague

Content and Structure (VCAS) Retrieval for XML Electronic Healthcare

Records (EHR), Proceeding of the 2009 International Conference on

Internet Computing, USA, PP: 241-246, 2009.

 Baydaa T. Rashid, Raad F. Alwan, Joan Lu, and Jim Yip, Recent

Development in XML-IR, proceeding of the School of Computing and

Engineering Annual Researchers’ Conference, University of Huddersfield,

UK, PP: 106-109, 2008.

108

Reference List

GZip Compressor, . http://www.gzip.org/.

Yousof, M. M., Shukur, Z. & Abdullah, A. L. (2011) CuQuP: A Hybrid Approach for

Selecting Suitable Information Systems Development Methodology Information

Technology Journal.

Al-Hamadani, B., Lu, J. & Alwan., R. F. (2011) A new Schema-Independent XML

Compression Technique. Accepted for publication in the International Journal of

Information Retrieval Research.

Al-Hamadani, B. T., Alwan, R. F., Lu, J. & Yip, J. 2009. Vague Content and Structure

(VCAS) Retrieval for XML Electronic Healthcare Records (EHR). Proceeding of

the 2009 International Conference on Internet Computing, USA. P: 241-246.

Al-Khalif a, S., Jagadish, H., Patel, J., Wu, Y., Koudas, N. & Srivastava, D. (2002).

Structural Joins: A Primitive for Efficient XML Query Pattern Matching. 8th

International Conference on Data Engineering, San Jose, CA, USA.

Alistair, M., Radford, M. N. & Ian, H. W. (1998) Arithmetic coding revisited. ACM Trans.

Inf. Syst., 16, 256-294.

Amer-Yahia, S., Lakshmanan, L. V. S. & Pandit, S. 2004. FleXPath: Flexible Structure

and FullText Querying for XML. ACM, SIGMOD., Paris, France. PP: 83-94.

Amir-Yahya, S., Cho, S. & Srivatava, D. (2002). Tree Pattern Relaxation. EDBT 8th

International Conference on Extending Database Technology, Prague, Czech

Republic.

Anders, M., (2009). An Introduction to XML and Web Technologies, Pearson Education.

Arion, A., Bonifati, A., Manolescu, I. & Pugliese, A. (2007) XQueC: A query-conscious

compressed XML database. ACM Trans. Internet Technol., Vol. 7, 10.

Arroyuelo, D., Claude, F., Maneth, S., M¨Akinen, V., Navarro, G., Nguyen, K., Sir´En, J.

& V¨Alim¨Aki, N. 2010. Fast In-Memory XPath Search using Compressed

Indexes. In Proceedings of the IEEE Twenty-Sixth International Conference on

Data Engineering (ICDE 2010), California, USA.

Augeri, C. (2008), On Some Results in Unmanned Aerial Vehicle Swarms, Ph.D Thesis,

Air Force Institute of Technology, San Diego, CA, USA.

109

Augeri, C. J., Bulutoglu, D. A., Mullins, B. E., Baldwin, R. O. & Leemon C. Baird, I.

(2007). An analysis of XML compression efficiency. Proceedings of the 2007

workshop on Experimental computer science, ACM, San Diego, California. 7.

Beizer, B., (1990). Software Testing Techniques, Second Edition.

Bodenhofer, U. & Küng, J. 2001. Enriching vague queries by fuzzy orderings. European

Society for Fuzzy Logic and Technology - EUSFLAT, Pages 360-364.

Bonifati, A., Lorusso, M. & Sileo, D. (2009) XML lossy text compression: A preliminary

study. Lecture Notes in Computer Science, Pages: 106-113.

Bourret, R. (2005) XML and Databases. Ronald Bourret.

Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G. & Pasi, G. 2010. An Efficient

Implementation of a Flexible XPath Extension. Recherche d'Information

Assistee par Ordinateur - RIAO, Pages 140-147.

Buneman, P., Grohe, M. & Koch, C. (2003) Path Queries on Compressed XML. IN

JOHANN-CHRISTOPH, F., PETER, L., SERGE, A., MICHAEL, C., PATRICIA,

S. & ANDREAS, H. (Eds.) Proceedings 2003 VLDB Conference. San

Francisco, Morgan Kaufmann.

Bzip2 (1996) http://www.bzip.org/.

Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G. & Spoletini, P. (2009) A fuzzy

extension of the XPath query language. Journal of Intelligent Information

Systems, 33, 285-305.

Cheney, J. (2001). Compressing XML with multiplexed hierarchical models. IEEE Data

Compression Conference (DCC 2001), IEEE Computer Society, pages 163-

172.

Cheney, J. (2005). An Empirical Evaluation of Simple DTD Conscious Compression

Techniques. Eighth International Workshop on the Web and Databases

(WebDB 2005), Maryland, USA.

Cheng, J. & Ng, W. 2004. XQZip: Querying Compressed XML using Structural Indexing.

International Conference on Extending Data Base Technology (EDBT),

Cleary, J. & Witten, I. (1984) Data Compression Using Adaptive Coding and Partial

String Matching. Communications, IEEE Transactions, 32, 396 - 402.

110

Damiani, E. & Tanca, L. 2000. Blind Queries to XML Data. Proceedings of the 11th

international conference on database and expert systems applications, . pp:

345-356.

De Meo, P., Palopoli, L., Quattrone, G. & Ursino, D. (2007) Combining Description

Logics with synopses for inferring complex knowledge patterns from XML

sources. Information Systems, 32, 1184-1224.

Dutta, A. K., Idwan, S. & Biswas, R. (2009) A Study of Vague Search to Answer

Imprecise Query. International Journal of Computational Cognition(IJCC),

Volume 7 Pages 70-75.

European, E., Agancy, (2003) http://www.eea.europa.eu/data-and-maps/data/airbase-

the-european-air-quality-database-1

Exi (2009) http://www.w3.org/XML/EXI/.

Farrell-Vinay, P., (2008). Manage Software Testing, Auerbach.

Fazzinga, B., Flesca, S. & Pugliese, A. (2009) Retrieving XML Data from

Heterogeneous Sources through Vague Querying. ACM Transactions on

Internet Technology, Vol. 9, pages: 7-35.

Ferragina, P., Luccio, F., Manzini, G. & Muthukrishnan, S. (2006). Compressing and

searching XML data via two zips. Proceedings of the 15th international

conference on World Wide Web, ACM, Edinburgh, Scotland. 751-760.

Florescu, D., Kossmann, D. & Manolescu, I. (2000) Integrating keyword search into

XML query processing. Computer Networks, 33, 119-135.

Franceschet, M. (2005) XPathMark: Functional and Performance Tests for XPath.

Lecture Notes in Computer Science, Springer, vol. 3671, 129--143.

Fredrick, E. J. T. & Dr.G.Radhamani (2009) Fuzzy Logic Based XQuery operations for

Native XML Database Systems. International Journal of Database Theory and

Application, Vol. 2.

Fuhr, N. 1999. A probabilistic framework for vague queries and imprecise information in

databases. 16TH INTERNATIONAL CONFERENCE ON VERY LARGE

DATABASES

Fuhr, N., Lalmas, M. & Trotman, A., (2006). Comparative evaluation of XML information

retrieval systems, 5th Edition, Springer.

111

Gerlicher, A. R. S. (2007), Developing Collaborative XML Editing Systems, PhD thesis,

University of the Arts London, London.

Girardot, M. & Sundaresan, N. (2000) Millau: an encoding format for efficient

representation and exchange of XML over the Web. Computer Networks, 33,

747-765.

Goldberg, K. H., (2009). XML: Visual QuickStart Guide Second Peachpit Press-Pearson

Education.

Groppe, J. (2008), SPEEDING UP XML QUERYING, PhD thesis, Zugl Lübeck

University, Berlin.

Grust, T. (2002). Accelerating XPath location steps. ACM SIGMOD International

Conference on Management of Data, Madison, WI, USA.

Gzip (1992) http://www.gzip.org/.

Halverson, A., Burger, J., Galanis, L., Kini, A., Krishnamurthy, R., Rao, A., Tian, F.,

Viglas, S., Wang, Y., Naughton, J. & Dewitt, D. (2003). Mixed Mode XML Query

Processing. 29th International Conference on Very Large Data Bases, Berlin,

Germany.

Harrusi, S., Averbuch, A. & Yehudai, A. 2006. XML Syntax Conscious Compression.

Proceedings of the Data Compression Conference (DCC’06),

Hevner, A., March, S., Park, J. & Ram, S. (2004) Design Science in Information

Systems Research. MIS Quarterly, Volume 28, pages 75-105.

Holman, G. K., (2002). XSLT and XPath, Prentice Hall PTR.

Huh, S. Y., Moon, K. H. & Lee, H. (2000) A data abstraction approach for query

relaxation. Information and Software Technology, 42, 407-418.

Hung, P. C. K., (2009). Services and Business Computing Solution with XML, IGI

Global.

Hunter, D., (2000). Beginning XML, Wrox Press Ltd.

Jiaheng, L. (2006), Efficient Processing of XML TWIG Pattern Matching, PhD thesis,

NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE.

Kay, M., (2004). XPath 2.0 Programmers Reference, Wiley Publishing, Inc.

112

Kay, M., (2008). XSLT 2.0 and XPath 2.0 Programmer's Reference, Wiley Publishing,

Inc.

Lalmas, M. & ROlleke, T. 2004. Modelling Vague Content and Structure Querying in

XML Retrieval with a Probabilistic Object-Relational Framework Proceedings of

the 6th International Conference on Flexible Query Answering Systems, FQAS

volume 3055 of Lecture Notes in Computer Science, Springer. Pages 432-445.

League, C. & Eng, K. (2007). Schema-Based Compression of XML Data with Relax NG.

IEEE data compression conference (DCC), Utah.

Li, H.-G., Aghili, S. A., Agrawal, D. & Abbadi, A. E. 2006. FLUX: Fuzzy Content and

Structure Matching of XML Range Queries. In Proceeding of WWW 2006

Edinburgh, Scotland.

Liefke, H. & Suciu, D. 2000. XMill: an Efficient Compressor for XML Data. ACM,

Mandreoli, F., Martoglia, R. & Tiberio, P. 2004. Approximate Query Answering for a

Heterogeneous XML Document Base. Proceedings of the 5th int. conf on web

information systems engineering. , Brisbane, Australia.

Maneth, S., Mihaylov, N. & Saker, S. 2008. XML Tree Structure Compression.

XANTEC’08, IEEE Computer Society,

Manning, C. D., Raghavan, P. & Schütze, H., (2008). Introduction to Information

Retrieval, Cambridge University Press.

Mcgovern, J., Bothner, P., Cagle, K., Nagarajan, V. & Linn, J., (2003). XQuery: Kick

Start, SAMS Publishing.

Mclaughlin, B. & Edelson, J., (2006). Java and XML Third Edition, O'Reilly.

Meersman, R., Tari, Z., Herrero, P., Abdelaziz, T., Elammari, M. & Branki, C. (2008)

MASD: Towards a Comprehensive Multi-agent System Development

Methodology. On the Move to Meaningful Internet Systems: OTM 2008

Workshops. Springer Berlin / Heidelberg.

Mihajlovic, V., Hiemstra, D. & Blok, H. E. (2006) Vague Element Selection and Query

Rewriting for XML Retrieval. Proceedings of the 6th Dutch-Belgian Information

Retrieval Workshop (DIR 2006). Delft, The Netherlands.

Min, J.-K., Park, M.-J. & Chung, C.-W. (2003). XPRESS: a queriable compression for

XML data. Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, ACM, San Diego, California. 122-133.

113

Min, J.-K., Park, M.-J. & Chung, C.-W. (2009) Method of Performing Queriable XML

Compression using Reverse Arithmetic Encoding and Type Inference Engine.

IN PATENT, U. S. (Ed. USA, Korea Advanced Institute of Science and

Technology.

Moffat., A. (1990) Implementing the PPM data compression scheme. IEEE Trans. on

Comm., 38(11), 1917–1921.

Moro, M. M., Ale, P., Vagena, Z. & Tsotras, V. J. 2008. XML Structural Summaries.

PVLDB '08, Auckland, New Zealand.

Morrison, J. & George, J. (1995) Exploring the Software Engineering Component in MIS

Research. Communication of the ACM, Volume 38, pages 80-91.

Müldner, T., Fry, C., Miziołek, J. K. & Durno, S. 2009. XSAQCT: XML Queryable

Compressor. Balisage: The Markup Conference 2009,

Murray, J. D. & Vanryper, W., (1996). Encyclopedia of graphics file formats, O'Reilly.

Ng, W., Lam, W.-Y. & Cheng, J. (2006) Comparative Analysis of XML Compression

Technologies. World Wide Web: Internet and Web Information Systems, Vol. 9,

Pages 5-33.

Norbert, F. & Kai, G. (2004) XIRQL: An XML query language based on information

retrieval concepts. ACM Trans. Inf. Syst., 22, 313-356.

Nunamaker, J., Chen, M. & Purdin (1991) Systems Development in Information

Systems Research. Journal of Management Information Systems, Volume 7,

pages 89-106.

Paparizos, S., Al-Khalifa, S., Chapman, A., Jagadish, H., V., Lakshmanan, L. V. S.,

Nierman, A., Patel, J. M., Sirvastava, D., Wiwatwattana, N., Wu, Y. & Yu, C.

(2003). TIMBER: A Native System for Querying XML. ACM SIGMOD

International Conference on Management of Data, ACM, San Diego, CA, USA.

Pkware (2003) http://www.pkware.com.

Plays, S. (2000) http://www.cafeconleche.org/examples/shakespeare/.

Rajpal, S., Doja, M. N. & Biswas, R. (2007) A method of vague search to answer

queries in relational databases. Information-an International Interdisciplinary

Journal, 10, 865-880.

114

Ray, E. T., (2001). Learning XML Guide to Creating Self-Describing Data, O'Reilly

Media Inc.

Sakr, S. (2009) XML compression techniques: A survey and comparison. Journal of

Computer and System Sciences, 75, 303-322.

Salomon, D., (2007). Data Compression: The Complete Reference, Springer.

Sanz, I. (2007), Flexible Technique for Heterogeneous XML Data Retrieval, PhD

Thesis, Universitat Jaume, Spain.

Schlieder, T. 2001. Similarity Search in XML Data using Cost-Based Query

Transformations. In Proceeding of ACM SIGMOD WebDB, pp. 19-24.

Schmidt, A., Waas, F., Kersten, M. & Carey, M. J. 2002. XMark: A Benchmark for XML

Data Management. Proceedings of the 28th VLDB Conference, Hong Kong,

China.

Shannon, C. E. (1948) A mathematica theory of communication. Bell System Technical

Journal, 27, Pages: 379-423.

Sigurbjornsson, B. & Trotman, A. 2003. Queries: INEX 2003 working group report. 2nd

workshop of the initiative for the evaluation of XML retrieval (INEX),

Skibinski, P., Grabowski, S. & Swacha, J. (2007). Effective Asymmetric XML

Compression. CADSM,

Stamatina, B., Mounia, L., Anastasios, T. & Theodora, T. (2006). User expectations

from XML element retrieval. Proceedings of the 29th annual international ACM

SIGIR conference on Research and development in information retrieval, ACM,

Seattle, Washington, USA.

Stasiu, R. K., Heuser, C. A. & Da Silva, R. (2005) Estimating recall and precision for

vague queries in databases. IN PASTOR, O. & CHUNHA, J. F. E. (Eds.)

Advanced Information Systems Engineering, Proceedings. Berlin, Springer-

Verlag Berlin.

Tidwell, D., (2008). XSLT, O'Reilly.

Tolani, P. M. & Haritsa, J. R. (2000). XGRIND: A Query-friendly XML Compressor. IEEE

18th international conference on Data Engineering,

Trotman, A. & Sigurbjornsson, B. 2005. Narrowed Extended XPath I (NEXI) Advances

in XML Information Retrieval Berlin / Heidelberg. Pages 16-40.

115

Violleau, T. (2001) Java Technology and XML. ORACLE.

W3c (1999) XML Path Language (XPath) - Version 1.0. W3C.

W3c (2001) XML Linking Language (XLink) Version 1.0. W3C.

W3c (2002) XML Pointer Language (XPointer). W3C.

W3c (2007a) XML Path Language (XPath) 2.0. World Wide Web Consortium.

W3c (2007b) XQuery 1.0 and XPath 2.0 Functions and Operators. W3C.

W3c (2008) Extensible Markup Language (XML) 1.0 (Fifth Edition).

W3c (2010a) XML Path Language (XPath) 2.0. World Wide Web Consortium.

W3c (2010b) XQuery 1.0 and XPath 2.0 Functions and Operators. W3C.

W3schools.Com (2006a) XLink and XPointer.

W3schools.Com (2006b) XML Examples.

Washington (2002) http://www.cs.washington.edu/research/xmldatasets/data/.

Waterloo (2003) http://softbase.uwaterloo.ca/~ddbms/projects/xbench/index.html.

White, S. (2008) How to Strike a Match. Catalys Web Site.

Wikipedia (2001) http://download.wikipedia.org/enwikinews/.

Williams, I., (2009). Beginning XSLT and XPath: Transforming XML Documents and

Data, Wrox Press.

Wintertree (2006) http://www.wintertree-software.com/index.html. Canada.

Winzip (1990) http://www.winzip.com/.

Yang, Y., Ng, W., Lau, H. L. & Cheng, J. 2006. An Efficient Approach to Support

Querying Secure Outsourced XML Information. In Proceedings of the 18th

Conference on Advanced Information Systems Engineering (CAiSE), pages

157-171.

Zadeh, L. A. (1965) Fuzzy sets. Information and control, Vol. 8, pp: 338-353.

Zhang, Q. & Kankanhalli, M. S. 2003. Semantic video annotation and vague query. 9th

International Conference on Multimedia Modelling (MMM 2003)

116

Zhao, F. & Ma, Z. M. 2009. Vague Query Based on Vague Relational Model. AISC 229-

238.

117

Appendix-A: XPath’s EBNF

The complete EBNF of the XPath query language is listed in this appendix. This

form had been used in XCVQ to check the correctness of the syntax of the

submitted query.

[1] XPath ::= Expr

[2] Expr ::= ExprSingle ("," ExprSingle)*

[3] ExprSingle ::= ForExpr
| QuantifiedExpr
| IfExpr
| OrExpr

[4] ForExpr ::= SimpleForClause "return" ExprSingle

[5] SimpleForClause ::= "for" "$" VarName "in" ExprSingle ("," "$" VarName "in"
ExprSingle)*

[6] QuantifiedExpr ::= ("some" | "every") "$" VarName "in" ExprSingle ("," "$"
VarName "in" ExprSingle)* "satisfies" ExprSingle

[7] IfExpr ::= "if" "(" Expr ")" "then" ExprSingle "else" ExprSingle

[8] OrExpr ::= AndExpr ("or" AndExpr)*

[9] AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*

[10] ComparisonExpr ::= RangeExpr ((ValueComp
| GeneralComp
| NodeComp) RangeExpr)?

[11] RangeExpr ::= AdditiveExpr ("to" AdditiveExpr)?

[12] AdditiveExpr ::= MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*

[13] MultiplicativeExpr ::= UnionExpr (("*" | "div" | "idiv" | "mod") UnionExpr)*

[14] UnionExpr ::= IntersectExceptExpr (("union" | "|") IntersectExceptExpr)*

[15] IntersectExceptExpr ::= InstanceofExpr (("intersect" | "except") InstanceofExpr)*

[16] InstanceofExpr ::= TreatExpr ("instance" "of" SequenceType)?

[17] TreatExpr ::= CastableExpr ("treat" "as" SequenceType)?

[18] CastableExpr ::= CastExpr ("castable" "as" SingleType)?

[19] CastExpr ::= UnaryExpr ("cast" "as" SingleType)?

[20] UnaryExpr ::= ("-" | "+")* ValueExpr

[21] ValueExpr ::= PathExpr

[22] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[23] ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"

[24] NodeComp ::= "is" | "<<" | ">>"

[25] PathExpr ::= ("/" RelativePathExpr?)
| ("//" RelativePathExpr)
| RelativePathExpr

[26] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

[27] StepExpr ::= FilterExpr | AxisStep

[28] AxisStep ::= (ReverseStep | ForwardStep) PredicateList

[29] ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep

http://www.w3.org/TR/xpath20/#doc-xpath-XPath�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#doc-xpath-Expr�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ForExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-QuantifiedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-IfExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-OrExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-ForExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SimpleForClause�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-SimpleForClause�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-QuantifiedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-IfExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-OrExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AndExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AndExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-AndExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ComparisonExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ComparisonExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-ComparisonExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RangeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ValueComp�
http://www.w3.org/TR/xpath20/#prod-xpath-GeneralComp�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeComp�
http://www.w3.org/TR/xpath20/#prod-xpath-RangeExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-RangeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AdditiveExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AdditiveExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-AdditiveExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-MultiplicativeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-MultiplicativeExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-MultiplicativeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-UnionExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-UnionExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-UnionExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-IntersectExceptExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-IntersectExceptExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-IntersectExceptExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-InstanceofExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-InstanceofExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-InstanceofExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-TreatExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SequenceType�
http://www.w3.org/TR/xpath20/#doc-xpath-TreatExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-CastableExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SequenceType�
http://www.w3.org/TR/xpath20/#doc-xpath-CastableExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-CastExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SingleType�
http://www.w3.org/TR/xpath20/#doc-xpath-CastExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-UnaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SingleType�
http://www.w3.org/TR/xpath20/#doc-xpath-UnaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ValueExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-ValueExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-PathExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-GeneralComp�
http://www.w3.org/TR/xpath20/#doc-xpath-ValueComp�
http://www.w3.org/TR/xpath20/#doc-xpath-NodeComp�
http://www.w3.org/TR/xpath20/#doc-xpath-PathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-StepExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-StepExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-StepExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-FilterExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AxisStep�
http://www.w3.org/TR/xpath20/#doc-xpath-AxisStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ReverseStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ForwardStep�
http://www.w3.org/TR/xpath20/#prod-xpath-PredicateList�
http://www.w3.org/TR/xpath20/#doc-xpath-ForwardStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ForwardAxis�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AbbrevForwardStep�

118

[30] ForwardAxis ::= ("child" "::")
| ("descendant" "::")
| ("attribute" "::")
| ("self" "::")
| ("descendant-or-self" "::")
| ("following-sibling" "::")
| ("following" "::")
| ("namespace" "::")

[31] AbbrevForwardStep ::= "@"? NodeTest

[32] ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

[33] ReverseAxis ::= ("parent" "::")
| ("ancestor" "::")
| ("preceding-sibling" "::")
| ("preceding" "::")
| ("ancestor-or-self" "::")

[34] AbbrevReverseStep ::= ".."

[35] NodeTest ::= KindTest | NameTest

[36] NameTest ::= QName | Wildcard

[37] Wildcard ::= "*"
| (NCName ":" "*")
| ("*" ":" NCName)

[38] FilterExpr ::= PrimaryExpr PredicateList

[39] PredicateList ::= Predicate*

[40] Predicate ::= "[" Expr "]"

[41] PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr | ContextItemExpr |
FunctionCall | FunctionCallList
FunctionCallList ::= "synonyms" " (" StrinLiteral ")"
| "similar(" StrinLiteral ")"
| "avg(" pathExpr ")"
| "median" " (" pathExpr ")"
| "between" " (" IntegerLiteral
 | DecimalLiteral
 | DoubleLiteral "," IntegerLiteral
 | DecimalLiteral
 | DoubleLiteral ")"

[42] Literal ::= NumericLiteral | StringLiteral

[43] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

[44] VarRef ::= "$" VarName

[45] VarName ::= QName

[46] ParenthesizedExpr ::= "(" Expr? ")"

[47] ContextItemExpr ::= "."

[48] FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")"

 [49] SingleType ::= AtomicType "?"?

[50] SequenceType ::= ("empty-sequence" "(" ")")
| (ItemType OccurrenceIndicator?)

[51] OccurrenceIndicator ::= "?" | "*" | "+"

[52] ItemType ::= KindTest | ("item" "(" ")") | AtomicType

[53] AtomicType ::= QName

[54] KindTest ::= DocumentTest

http://www.w3.org/TR/xpath20/#doc-xpath-ForwardAxis�
http://www.w3.org/TR/xpath20/#doc-xpath-AbbrevForwardStep�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#doc-xpath-ReverseStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ReverseAxis�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AbbrevReverseStep�
http://www.w3.org/TR/xpath20/#doc-xpath-ReverseAxis�
http://www.w3.org/TR/xpath20/#doc-xpath-AbbrevReverseStep�
http://www.w3.org/TR/xpath20/#doc-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-KindTest�
http://www.w3.org/TR/xpath20/#prod-xpath-NameTest�
http://www.w3.org/TR/xpath20/#doc-xpath-NameTest�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#prod-xpath-Wildcard�
http://www.w3.org/TR/xpath20/#doc-xpath-Wildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-NCName�
http://www.w3.org/TR/xpath20/#prod-xpath-NCName�
http://www.w3.org/TR/xpath20/#doc-xpath-FilterExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-PrimaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-PredicateList�
http://www.w3.org/TR/xpath20/#doc-xpath-PredicateList�
http://www.w3.org/TR/xpath20/#prod-xpath-Predicate�
http://www.w3.org/TR/xpath20/#doc-xpath-Predicate�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#doc-xpath-PrimaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-Literal�
http://www.w3.org/TR/xpath20/#prod-xpath-VarRef�
http://www.w3.org/TR/xpath20/#prod-xpath-ParenthesizedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ContextItemExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-FunctionCall�
http://www.w3.org/TR/xpath20/#doc-xpath-Literal�
http://www.w3.org/TR/xpath20/#prod-xpath-NumericLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-StringLiteral�
http://www.w3.org/TR/xpath20/#doc-xpath-NumericLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-IntegerLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-DecimalLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-DoubleLiteral�
http://www.w3.org/TR/xpath20/#doc-xpath-VarRef�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#doc-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-ParenthesizedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#doc-xpath-ContextItemExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-FunctionCall�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-SingleType�
http://www.w3.org/TR/xpath20/#prod-xpath-AtomicType�
http://www.w3.org/TR/xpath20/#doc-xpath-SequenceType�
http://www.w3.org/TR/xpath20/#prod-xpath-ItemType�
http://www.w3.org/TR/xpath20/#prod-xpath-OccurrenceIndicator�
http://www.w3.org/TR/xpath20/#doc-xpath-OccurrenceIndicator�
http://www.w3.org/TR/xpath20/#doc-xpath-ItemType�
http://www.w3.org/TR/xpath20/#prod-xpath-KindTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AtomicType�
http://www.w3.org/TR/xpath20/#doc-xpath-AtomicType�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-KindTest�
http://www.w3.org/TR/xpath20/#prod-xpath-DocumentTest�

119

| ElementTest
| AttributeTest
| SchemaElementTest
| SchemaAttributeTest
| PITest
| CommentTest
| TextTest
| AnyKindTest

[55] AnyKindTest ::= "node" "(" ")"

[56] DocumentTest ::= "document-node" "(" (ElementTest | SchemaElementTest)? ")"

[57] TextTest ::= "text" "(" ")"

[58] CommentTest ::= "comment" "(" ")"

[59] PITest ::= "processing-instruction" "(" (NCName | StringLiteral)? ")"

[60] AttributeTest ::= "attribute" "(" (AttribNameOrWildcard ("," TypeName)?)? ")"

[61] AttribNameOrWildcard ::= AttributeName | "*"

[62] SchemaAttributeTest ::= "schema-attribute" "(" AttributeDeclaration ")"

[63] AttributeDeclaration ::= AttributeName

[64] ElementTest ::= "element" "(" (ElementNameOrWildcard ("," TypeName
"?"?)?)? ")"

[65] ElementNameOrWildcard ::= ElementName | "*"

[66] SchemaElementTest ::= "schema-element" "(" ElementDeclaration ")"

[67] ElementDeclaration ::= ElementName

[68] AttributeName ::= QName

[69] ElementName ::= QName

[70] TypeName ::= QName

[71] IntegerLiteral ::= Digits

[72] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)

[73] DoubleLiteral ::= (("." Digits) | (Digits ("." [0-9]*)?)) [eE] [+-]? Digits

[74] StringLiteral ::= ('"' (EscapeQuot | [^"])* '"') | ("'" (EscapeApos | [^'])* "'")

[75] EscapeQuot ::= '""'

[76] EscapeApos ::= "''"

[77] Comment ::= "(:" (CommentContents | Comment)* ":)"

[78] QName ::= [http://www.w3.org/TR/REC-xml-names/#NT-QName]Names

[79] NCName ::= [http://www.w3.org/TR/REC-xml-names/#NT-NCName]Names

[80] Char ::= [http://www.w3.org/TR/REC-xml#NT-Char]XML

[81] Digits ::= [0-9]+

[82] CommentContents ::= (Char+ - (Char* ('(:' | ':)') Char*))

http://www.w3.org/TR/xpath20/#prod-xpath-ElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-SchemaElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-SchemaAttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-PITest�
http://www.w3.org/TR/xpath20/#prod-xpath-CommentTest�
http://www.w3.org/TR/xpath20/#prod-xpath-TextTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AnyKindTest�
http://www.w3.org/TR/xpath20/#doc-xpath-AnyKindTest�
http://www.w3.org/TR/xpath20/#doc-xpath-DocumentTest�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-SchemaElementTest�
http://www.w3.org/TR/xpath20/#doc-xpath-TextTest�
http://www.w3.org/TR/xpath20/#doc-xpath-CommentTest�
http://www.w3.org/TR/xpath20/#doc-xpath-PITest�
http://www.w3.org/TR/xpath20/#prod-xpath-NCName�
http://www.w3.org/TR/xpath20/#prod-xpath-StringLiteral�
http://www.w3.org/TR/xpath20/#doc-xpath-AttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AttribNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-TypeName�
http://www.w3.org/TR/xpath20/#doc-xpath-AttribNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeName�
http://www.w3.org/TR/xpath20/#doc-xpath-SchemaAttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeDeclaration�
http://www.w3.org/TR/xpath20/#doc-xpath-AttributeDeclaration�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeName�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-TypeName�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementName�
http://www.w3.org/TR/xpath20/#doc-xpath-SchemaElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementDeclaration�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementDeclaration�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementName�
http://www.w3.org/TR/xpath20/#doc-xpath-AttributeName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-TypeName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-IntegerLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-DecimalLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-DoubleLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-StringLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-EscapeQuot�
http://www.w3.org/TR/xpath20/#prod-xpath-EscapeApos�
http://www.w3.org/TR/xpath20/#doc-xpath-EscapeQuot�
http://www.w3.org/TR/xpath20/#doc-xpath-EscapeApos�
http://www.w3.org/TR/xpath20/#doc-xpath-Comment�
http://www.w3.org/TR/xpath20/#prod-xpath-CommentContents�
http://www.w3.org/TR/xpath20/#prod-xpath-Comment�
http://www.w3.org/TR/REC-xml-names/#NT-QName�
http://www.w3.org/TR/REC-xml-names/#NT-NCName�
http://www.w3.org/TR/REC-xml/#NT-Char�
http://www.w3.org/TR/xpath20/#doc-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-CommentContents�
http://www.w3.org/TR/xpath20/#prod-xpath-Char�

120

Appendix-B: Implementing XCVQ

The implementation of XCVQ is done using Eclipse environment for java

programming language. The GUI for the system uses the (visualswing4eclipse)

plug-in to makes the design more powerful, friendly, and easy to use. The main

window of the system is shown in Figure B-1. Using this GUI the user can

compress, decompress and querying XML documents.

This section illustrates the implementation part of XCVQ compressor,

decompressor, and the vague query processor.

1. Implementation of XCVQ-C

According to all the advantages of using SAX parser mentioned in section

2.2.2 to parse the given XML document, SAX parser (from Eclipse

environment for java programming language) is used to scan the XML

document. This type of parsing scans the document only once by detecting

several events from that document. During each event XCVQ-C collects

information from the document in order to use it in the compression process.

The events and the work through each one are listed below and illustrated in

the class diagram in Figure B-2:

Figure B-1: The main screen of XCVQ

121

4. (StartDocument): this event is cached only once by SAX when it detects the

first tag of the document. In this stage XCVQ-C only initializes the used

variables and prepares the used data structures and the output file to

receive the data. Furthermore it specifies the name space used in that

document and save it for further processes.

5. (startElement): this event is coached by SAX each time it detects an open

tag. It holds the name of the element (qName) and the list of attribute

names and values associated with this element (if any). In this stage,

XCVQ-C performs the algorithm in Figure 4-6.

Figure B-2: XCVQ-C Class Diagram

122

6. (chracters): this event occurs when a data value appeared in the XML

document. SAX could process this event more than once to deal with the

same data. The data value is accumulated and added to the list of data in

a leaf node in its appropriate path as illustrated in Figure B-4.

7. (endElement): SAX processes this event when it catches the end of an

element, a case means that there is a piece of data ready to be inserted in

a leaf node of the structured-tree (if that element holds data). The suitable

path can be known from the contents of the pathStack as described in

Figure 4-7.

8. (endDocument): this event is processed only once by SAX when it

catches the very end of the XML document. In this stage the containers

first are created from the structured-tree as illustrated in Figure 4-5. Each

container has an index which represents the path from the root to the leaf

for the data contained in this container. Secondly, the contents of each

container are compressed using one of the back-end general purposes

compression techniques either Gzip or LZW. The complete algorithm for

LZW compressor is shown in Figure B-7.

7. Algorithm characters(chaArray ch[])

8. data+=ch[];

9. ignoreWhiteSpaces(data)

10. End.

Figure B-4: (character) algorithm

123

The LZW algorithm starts with filling the first 256 positions in the

dictionary with the 256 printable characters (line 3). The scanning

process for the input string starts character by character in an

attempt to look for the maximum sequence of characters belongs to

the dictionary and add the index of this sequence to the output file

(Salomon, 2007). Otherwise, if this sequence has not been added to

the dictionary yet, the algorithm adds it to the end of the dictionary.

For the Gzip compressor, XCVQ-C uses the java (java.util.zip)

package in order to compress the required data. This package has

several classes and one of them is (GZIPOutputStream) class

26. Algorithm LZW(String input)

27. input={c1, c2, …cn}

28. let dictionary={all the 256 printable characters}

29. lookUpString=c1

30. for all ci input: i=2, 3, …n

31. lookUpString=lookUpString+ ci

32. if (lookUpString) dictionary

33. add(lookUpString)to the end of dictionary

34. output the position of lookUpString+ci in

 dictionary

35. lookUpString= ci+1

36. else

37. lookUpString=lookUpString+ ci+1

38. While (lookUpString + ci+1 dictionary)

39. i++

40. lookUpString=lookUpString+ ci

41. Output the position of lookUpString in

 dictionary

Figure B-7 :(LZW) algorithm

124

which consists of more than one constructor, each of which is used

to convert the input stream into a zip file.

After implementing the compressor algorithm, some information about the

compressed file is appeared to the user, as shown in Figure B-8, including the

compression ratio. The new compressed file is saved with the same name and in

the same path as the original XML document with (.zip) extension.

2. XCVQ-D Implementation

The implementation of the XCVQ-D depends restore the compressed XML

document into the same containers used in the compression stage as illustrated in

Figure B-9. Before applying the decompression algorithm in Figure 4-6, XCVQ-D

decompresses the container’s contents using GZip decompression technique and

then uses these containers alongside with the pathDictionary to reproduce the

XML document.

Figure B-8: GUI for compression results.

125

 The new decompressed XML document is saved in the same path as the

compressed XML document, carrying its name followed by (_1.xml) to

differentiate it from the original XML document.

3. XCVQ-QP Implementation

The implementation of XCVQ-QP passes through several stages. Each stage

has specific roles and certain classes which are illustrated in Figure B-10.

Figure B-9: (XCVQ-D) class diagram

126

The main steps of each stage and the detailed roles are listed in the

following sections.

a. XPath’s EBNF expansion

When the user writes a vague query using the GUI in Figure B-11, this syntax

of this query is checked against the XPath Extended Backus-Naur Form (EBNF)

(W3C, 2007a) which specifies the grammar of XPath language. The complete

EBNF for XPath query language can be seen in Appendix-A.

Figure B-10: XCVQ-QP class diagram

127

Since ZXCQ-QP performs expansion on XPath grammars to provide it the

capability of accept vague conditions, an expansion process is performed on the

XPath EBNF. This expansion includes:

 PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr
| ContextItemExpr | FunctionCall |
FunctionCallList

FunctionCallList ::= “synonyms” “(“ StrinLiteral “)”

 | “similar(“ StrinLiteral “)”

 | “avg(“ pathExpr “)”

 | “median” “(“ pathExpr “)”

 | “between” “(“ IntegerLiteral

 | DecimalLiteral

 | DoubleLiteral “,” IntegerLiteral

 | DecimalLiteral

 | DoubleLiteral “)”

Figure B-11: GUI for XCVQ-QP

128

Using Java Compiler-Compiler (JavaCC), the expanded EBNF for XPath is

converted into executable java source code to makes it possible to follow the

instructions of the EBNF and checks the syntax and lexical errors in the user’s

query. If the query does not meet the XPath grammar, an error message appears

to the user determining the exact place of the error within the query.

The syntactically correct query is converted into a tree structure depending

on the semantic of the XPath query. As an example, Figure B-12- (a) shows a

query and (b) shows its semantic tree. The semantic tree for each query

determines the type of each part of that query. In this example the query is

divided into two main branches since it has the (AndExpr and), each branch is a

(PathExpr). The first branch holds the (CATALOG, CD, and TITLE) QNames,

while the second branch holds (CATALOG, CD, and Year) QNames with the

(IntegerLiteral) accompanied the (YEAR) element.

The tree structure of the given query is used by XCVQ-QP to determine the

type of each QName and to build the required data structure in order to process

the query as discussed in the next section.

129

b. Storing the Query

XCVQ-QP uses a pre-designed data structure named (qInfo) in order to store

all the required information from the query. This structure has the following

fields:

Figure B-12: An XPath query (a) and its semantic tree (b)

 /CATALOG/CD/TITLE and /CATALOG/CD[YEAR > 1990]

(a)

XPath2
 XPath
 Expr
 AndExpr and
 PathExpr
 Slash /
 StepExpr
 AbbrevForwardStep
 NodeTest
 NameTest
 QName CATALOG
 StepExpr
 AbbrevForwardStep
 NodeTest
 NameTest
 QName CD
 StepExpr
 AbbrevForwardStep
 NodeTest
 NameTest
 QName TITLE
 PathExpr
 Slash /
 StepExpr
 AbbrevForwardStep
 NodeTest
 NameTest
 QName CATALOG
 StepExpr
 AbbrevForwardStep
 NodeTest
 NameTest
 QName CD
 PredicateList
 Predicate
 Expr
 ComparisonExpr >
 StepExpr
 AbbrevForwardStep
 NodeTest
 NameTest
 QName YEAR
 IntegerLiteral 1990

(b)

130

 Table B-1: The set of types provided by XCVQ-QP to qName

predicateLiteral predicateString comparisonLiteral comparisonString

comparisonPath functionName andExpr orExpr

ifVariable forVariable ifExpr forExpr

pathExpr

9. Name: this field stores all the QNames appear in the query.

10. Attribute: it is a Boolean field which is true if the QName is an attribute

and is false otherwise.

11. Type: in this field the type of each QName is stored. XCVQ-QP provides

each QName a specific type according to its position and role in the

query. The set of provided types is shown in Table B-1. These types cover

all the kinds of XPath query that can be processed by XCVQ-QP.

12. Value: if there is a literal or a string value in the query, then it is

associated with the proper qName.

Table B-2: the qInfo structure for the query in Figure B-13

Name Attribute Type Value Operation FunctionCall
CATALOG False andExpr

CD False pathExpr
TITLE False pathExpr
CATALOG False andExpr

CD False predicateLiteral
YEAR False comparisonLiteral 1990 >

13. Operation: this field stores the arithmetical and logical operations in the

query.

14. FunctionCall: stores the list of parameters for the function if there is one

in the query.

131

Table B-2 illustrates the qInfo structure for the query example in Figure B-12.

c. Query decomposition: Stage-1

After collecting the important information from the query and store them in

(qInfo) structure, the algorithm in Figure B-13 is processed. This algorithm starts

by collecting the relevant documents from the compressed XML repository.

During this process each compressed document is scanned for one of the Name

field in the qInfo structure, if it contains one of them in its path-dictionary, then

this file is candidate to be one of the relevant documents. If (n) relevant

document encountered, only the path-dictionary for these documents are loaded

into the memory and the original qInfo structure is decomposed into (n)

44. Algorithm processXPathQuery(structure qInfo)

45. let qInfo= [a1, a2, …, an] such that:

46. let fileDB=[f1, f2, …, fm]

47. let relevant=[r1, r2, …, rk]

48. for all ai.Name qInfo

49. for all fj fileDB

50. if ai.Name fj.pathDictionary

51. relevant.pathDictionary fj

52. relevant.query ai

53. for all ri relevant

54. subQuery= Decpmpose(ri.query)

55. cost=relax(ri.subQuery)

56. if cost>threshold

57. remove (ri) from relevant

58. tree=retrieveData

59. allTrees=Combine all the retrieved trees

Figure B-13: Processing an XPath query algorithm.

132

structures each of which is associated with its relevant document (lines 5-9).

This process decomposes the XPath query into several sub-queries according to

their relevancy to a specific document.

d. Query Decomposition: Stage-2

After completing the first stage decomposition, the second stage of the

decomposition is started by applying the decomposition function in Figure B-14

on each sub-query to produce a new set of sub-queries (line11 in Figure B-13).

This function determines the relevant containers from the compressed file. This

is done through checking if any Name field of the given sub-query is contained

within the index of that container. In this case the relevant container is uploaded

into the memory alongside with its relevant part from the sub-query.

For all the new sub-queries, each one is relaxed against the index of its

relevant container, (line 12). This relaxation is done by performing a matching

process between the sub-query and the index of its relevant container. This

process performs changes on the original sub-query in order to fit it with the

index by adding, removing, renaming, or reordering position in the nodes of the

query. After each change, the cost of that change is computed and the total cost

of relaxation is checked against a pre-defined threshold to determine if this

1. Function decompose (query Q)

2. let Containers=[c1, c2, …, cn]

3. For all ci

4. If Q.namej ci.index

5. newSub-queries Q.namej

6. newSub-query ci

7. }

8. End.

Figure B-14: Query decomposition function

133

query should be removed from the list of relevant queries if it has high cost

(lines 13-14).

e. Retrieving and combining results

At this stage, (line 17), each container accompanied with its sub-query is on

the memory ready to be retrieved. The retrieving process taking into

consideration the type of each qName and its operation and retrieve only the

required information. If the query required retrieving information from the data

set attached in the container, decompression process is performed only on this

single container in order to retrieve the required data. The example query in

Figure B-12 has a predicate requiring the values of the (YEAR) data to be greater

than (1990) which requires the performance of the decompression only on one

container that has the data and filter these data to retrieve only the data that meet

the condition.

Until this stage no decompression required when the query is structured

based one. After combining all the retrieved sub-documents, each one is

decompressed, using the same decompression algorithm in Figure 4-6, and

combined under one XML document to form single tree instead of a forest.

The resulted document can be compressed again if the user needs to

make further querying on it.

134

Appendix-C: XML Corpus & XPath Benchmark

This appendix contains the XML corpus that were used in the testing

process (Table C-1), the description of its groups, and the complete XPath

benchmark that were used in the testing process (Table C-2).

Table C-1: XML Corpus

Group XML file name File Size/MB %SR Tag no
Element

no

Attributes

no

Max

depth

1

321gone

Ebay

Ubid

Yahoo_Shopping

Homeseekers

Nky

Texas

Yahoo_Homes

XMark-1

XMark-2

(Schmidt et al., 2002;

Washington, 2002)

2.441E-2

3.515E-2

2.050E-2

2.539E-2

2.603

3.213

3.177

0.419

11.325

113.061

38.06

11.14

42.63

34.1

58.12

70.43

58.7

56.77

30.16

30.03

311

156

342

342

59322

112051

84577

11038

520546

5167121

32

32

32

32

35

50

54

33

74

74

0

0

0

0

0

0

0

0

0

0

6

6

6

6

5

5

5

3

12

12

2 Baseball

(Washington, 2002)

0.632 92.95

28306 46 0 6

3

Berkeley

Cornell

Michigan

Texas

Washington

Read

Uwm

Wsu

(Washington, 2002)

9.277E-2

3.027E-2

6.738E-2

3.222E-2

5.175E-2

0.283

2.226

1.558

32.96

45.64

46.68

44.88

33.28

63.22

58.41

73.99

1143

833

1899

859

1025

10546

66729

74557

15

15

15

15

15

16

16

16

0

0

0

0

0

0

6

0

6

6

6

6

6

5

6

5

4 CD-Catalog 0.598 63.68

183 8 0 3

5 DBLP

(Washington, 2002)

131.167 45.1

4718588 32 3 5

6

EnWikiNews

EnWikiQuote

EnWikiVersity

EnWikTionary

(Wikipedia, 2001)

69.421

124.532

81.397

556.612

10.13

3.69

10.64

26.26

2103778

2672870

3333622

28656178

20

20

20

20

4

4

4

4

6

6

6

6

135

7

EXI-Array

EXI-factbook

EXI-GeogCoord

EXI-Invoice

EXI-weblog

(EXI, 2009)

22.062

4.042

15.828

0.934

2.526

43.7

47.47

0.003

65.41

72.49

226523

55453

17

15075

93435

47

199

30

52

12

0

0

0

28

0

14

8

11

9

3

8
GB-meta

Sweden-meta

Turkey-meta

(European, 2003)

48.82

3.35

5.85E-3

71.32

71.14

73.66

886419

60614

100

97

101

48

18

17

2

13

12

8

9

Henry IV, Part I

Richard II

j_caesar

Shakespeare

(plays, 2000)

0.274

0.251

0.181

7.529

34.21

32.48

37.95

36.56

4334

4116

4455

179690

14

16

16

22

0

0

0

0

7

8

8

9

10

LineItem

XBench-DCSD-Normal

XBench-DCSD-Small

(Washington, 2002;

Waterloo, 2003)

30.799

105.368

10.578

83.47

57.24

57.3

1022976

2242699

2259292

18

50

50

0

0

0

3

10

10

11 Mondial

(Washington, 2002)

1.778 48.74 22423 23

45 8

12 NASA

(Washington, 2002)

24.622 37.13 476646 61 0 11

13 SwissPort

(Washington, 2002)

112.761

56.5 13917441 85 0 5

14 Tree Bank

(Washington, 2002)

85.416 31.65 10795711 250 0 36

The selected XML documents in the corpus were organized into many

groups according to their origins and the purpose of their use, as follows:

Group-1: It consists of many XML documents that are used in online

shopping processes through different e-shopping and auction web sites. These

documents are converted from database systems and they contain many empty

elements with neither data nor sub-elements inside them.

Group-2: the XML document in this group provides a complete

description to all the teams including all the details about their players who

participated in 1998 national league.

Group-3: This group contains XML documents from different academic

department. Some of the documents describe simple CVs for the academic staff

136

in these departments and the courses they teach. The other documents describe

the detailed information for the courses submitted by some academic

departments in different universities.

Group-4: The Document in this group gives details about many songs

CDs such as their name, publication year, and their country.

Group-5: This group has only one document that illustrates different

papers published in proceeding of conferences and journals in the field of

computer science.

Group-6: different backup documents from Wikipedia web site are

collected in this group.

Group-7: This group contains sample documents from a collection of

documents collected by the Efficient XML Interchange (EXI) working group

which is part of the W3C. These documents contain the needed information in

data exchanging.

Group-8: The XML documents that describe the detailed climate

changes in different countries around the world are listed in this group.

Group-9: This group has some of Shakespeare’s plays which considered

being (TD) document type.

Group-10: This document contains a huge amount of shipping

information for online shopping for different items taken from Google web site.

Group-11: The XML document in this group contains lots of statistical

information about many countries around the world such as their population,

area, available natural resources, etc.

Group-12: This document is transferred from NASA database which

includes summarization of some of the NASA projects converted from text file.

Group-13: The complete description of the DNA sequence is described

in the XML document in this group.

137

Group-14: This document contains many parsed and encrypted English

sentences taken from the Wall Street Journal.

Table C-2: XPath Query Benchmark

QFT

Concept

Query

Name
Query Description

Axes

Q1 /catalog/cd normal path (exact
matching)

Q2 /catalog/title/cd Path out of order

Q3 /cd/year/catalog Does not start from the root

Q4 /catalog/title a gap exists , the actual
path is (/catalog/cd/title)

Q5 /catalog/yeer miss spelling in the element
name

Q6 /cd/cateloge/yeer miss spelling in more than
one element name

Q7 /catalog/cd/year/title Sibling elements(year, title)

Filters

Q8 /catalog/cd/year[5] Normal partial match
(position filter)

Q9 /catalog/cd/year["1990"] Normal partial match (value
filter)

Q10 /cd/catalog/country["uk"] Out of order path +
predicate

Q11 /cd/title/year/country[8] Siblings + predicate

Q12 cataloge/yeer/cuntry["USA"] Spelling errors + predicate

Operators

Q13 /catalog/cd[year lt 2000] Normal predicate with
comparative operator

Q14 /cd/title/artist[year ge 1990] Sibling + comparative
operator

Q15 /cd/title[year lt 1990][country
eq "uk"]

More than one comparative
operator

Q16 /cd/title/country["uk"][yeer le
1990]

Predicate + comparative
operator

Q17 /cd/title/year eq 1990 comparative operator
without predicate

Q18
/cd/year=2000 Relational operator (the

result is either True or
False)

Q19 cd/title/yeer !=1998 Siblings + miss spelling +
operation

Q20 /cd[year gt 1990] and
/cd[country eq "uk"]

(and) operator

Functions

Q21 /cd/title/synonyms("date") Find the synonyms of an
element name

Q22
cd/country eq

synonyms("Britain")
Find the synonym of a data
value

Q23 /cd/title/similar(artest) Find the similar element
name

138

Q24 /cd/similar(artest)/title Find the similar element
name

Q25
/cd/year/title eq similar("keep

your heart")

Find the similar data value

Q26 /cd/artist/count(title) Find the number of
occurrences of an element

Multi-File

Q27 /cd/book/year/title Exact match

Q28 /cd/book/title/artist/author/year Siblings

Q29 book/title/cd/yeer/aother Miss spelling

Q30 /cd/book/title/year[“1990”] Data value predicate

Q31
book/title/year[4] and

/cd/title/year

Order predicate

Q32 /cd/book[year lt 1990][country
eq "uk"]

Multiple predicates

139

Appendix-D: Testing Results

The complete set of data that had been used to test and evaluate XCVQ-C

and XCVQ-D is listed in the following table. This table contains all the actual

results for these testing.

XML file name SCR SCT/Sec SDC/Sec CR CT/ Sec DT/Sec

Turkey-meta 48.02 0.031 0.47 78.17 0.047 0.32

Ubid 60.34 0.032 0.31 83.35 0.047 0.47

321gone 38.99 0.042 0.46 73.31 0.078 0.47

Yahoo_Shopping 42.47 0.051 0.62 76.54 0.087 0.64

Cornell 68.66 0.062 0.31 87.5 0.102 0.47

Texas 45.71 0.063 0.32 81.75 0.13 0.78

Ebay 16.51 0.031 0.48 70.29 0.163 0.75

Washington 50.55 0.031 0.78 81.1 0.2 0.63

Michigan 70.83 0.047 0.41 89.3 0.42 1.09

Berkeley 50.81 0.094 0.47 81.94 0.538 0.62

j_caesar 30.32 0.14 0.64 70.91 0.58 1.1

Richard II 24.9 0.22 0.8 68.51 0.72 1.56

Henry IV, Part I 26.85 0.37 1.59 68.8 0.85 1.1

Read 64.82 0.583 1.85 87.33 0.988 1.14

Yahoo_Homes 43.32 0.68 3.04 83.35 0.96 2.19

CD-Catalog 57.67 0.77 4.13 75.53 0.94 2.32

Baseball 62.19 0.95 5.53 83.56 1.078 2.34

EXI-Invoice 58.98 0.98 5.62 73.63 1.28 3.12

Wsu 64.81 21.85 20.62 87.35 1.56 3.59

Mondial 59.37 14.64 32.81 85.35 4.42 6.56

Umw 66.37 39.17 31.56 90.35 4.43 4.37

EXI-weblog 44.6 54.8 57.81 72.38 7.3 4.84

Homeseekers 47.9 36.98 72.75 86.21 12.6 32.41

Texas 67.24 42.93 79.7 86.8 16.75 36.04

Nky 50.75 29.54 92.1 83.69 12.3 36.4

Sweden-meta 78.23 57.53 97.6 93.52 12.4 36.41

EXI-factbook 37.5 61.71 103.94 74.2 80.8 29.07

Shakespeare 26.01 85.5 148.6 69.32 130.8 32.09

XBench-DCSD- 27.76 103.7 155.7 69.92 194.6 38.28

140

Small

XMark-1 38.45 120.8 165.3 75.38 225.6 39.01

EXI-GeogCoord 0.0031 169.1 198.8 75.61 374.7 40.1

EXI-Array 22.062 210.9 226.4 72.56 458.5 43.4

NASA 39.18 256.3 254.2 88.51 517.3 43.9

LineItem 30.799 312.8 297.7 81.51 692.4 78.6

GB-meta 77.22 370.6 337.2 75.67 734.2 81

EnWikiNews 69.421 398.9 412.3 68.52 810.6 89.89

EnWikiVersity 81.397 417.7 489.8 70.55 894.7 97.39

Tree Bank 37.68 426.3 504.4 79.8 956.2 99.87

XBench-DCSD-
Normal

30.19 486.9 645.6
71.38 1069.8 100.19

SwissPort 58.12 502.6 702.4 81.2 1296.4 105.75

XMark-2 37.89 524.5 826.9 77.02 1368.8 113.65

EnWikiQuote 68.25 565.8 924.3 69.69 1438.1 123.9

DBLP 68.16 605.1 1022.3 79.54 1578.7 157.45

EnWikTionary 85.43 1104.7 3750.7 70.85 4152.7 260.9

141

Appendix-E: XPath Query Evaluation Benchmark

This appendix contains the complete set of queries that had been used to

evaluate XCVQ-QP and comparing the results with other queriable XML

compressors. It consists of three sets of queries:

Set-1: The queries listed in this set were used to test the performance of

XGrind and Xpress compressors, and were used to evaluate XCVQ-QP and

compare the results with these two techniques.

XML document Query

Name

Query

BaseBall B1 SEASON/LEAGUE/DIVISION/TEAM/PLAYER/GIVEN NAME

B2 //TEAM/PLAYER/SURNAME

B3 /SEASON/LEAGUE//TEAM/TEAM CITY

B4 /SEASON/LEAGUE//TEAM[TEAM CITY >= Chicago and TEAM CITY <=

Toronto]

Umw C1 /root/course/selection/session/place/building

C2 //session/time

C3 /root/course//session/time/start time

C4 /root/course//session/time[start time >= 800 and start time <= 1200]

Shakespeare S1 /PLAY/ACT/SCENE/SPEECH/STAGEDIR

S2 //PGROUP/PERSONA

S3 /PLAY/ACT//SPEECH/SPEAKER

S4 /PLAY/ACT//SPEECH[SPEAKER>= CLEOPATRA and SPEAKER <=

PHILO]

142

Set-2: this set of queries, listed in the following table, was used to

evaluate XCVQ-QP against XQzip compressor.

XML document Query

Name

Query

LineItem L1 //table/T/L_TAX

L2 /table/T[L_TAX = "0.02"]

L3 /table/T[L_TAX[[. >= "0.02"]]]

L4 //T[L_ORDERKEY = "100"]

L5 //L_ DISCOUNT

TreeBank

T1 //_QUOTE_//_NONE_

T2 //_QUOTE_//_BACKQUOTES_

T3 //_QUOTE_//NP[_NONE_ = "FTTVhQZv7pnPMt+EeoeOSx"]

T4 //_QUOTE_//SBAR//VP/VBG

T5 //_QUOTE_//NP/PRP_DOLLAR_

Shakespeare S1 //SPEAKER

S2 //PLAY//SCENE//STAGEDIR

S3 //SPEECH[SPEAKER = "PHILO"]/LINE

S4 //SCENE/SPEECH/LINE

S5 //SCENE[TITLE="SCENE II. Rome. The house of EPIDUS"]/LINE

Set-3: the queries listed in the following table were used to evaluate

XCVQ-QP against XSAQCT compressor.

XML document Query

Name

Query

dblp D1 /dblp/article/cdrom

D2 /dblp/mastersthesis/@key

143

LineItem L1 /table/T/L_COMMENT

L2 /table/T/L_ORDERKEY

Shakespeare S1 /PLAYS/PLAY/TITLE

S2 PLAYS/PLAY/ACT/SCENE/STAGEDIR

SwissPort P1 /root/Entry/@id

P2 /root/Entry/Ref/Comment

uwm U1 /root/course_listing/course

U2 /root/course_listing/restrictions/A/@HREF

144

Appendix-F: Independent testing

The following table contains the XML documents that have been used in an

independent testing to find the compression ratio using XCVQ. To find the

compression ratio, the following equation was used:

The independent testing was made on environment Quad-Core Intel Xeon

processor that has the speed of 2.8 GHz. The operating system was Mac OS X

10.6.4 with 8GB of hard drive.

XML File Name Compression Ratio

Setup of points 50%
books1 50%

cd_catalog 60%
TURKY_meta 66.7%

data_20101111102811 57.9%
ubid 81%

321gone 0.72%
yahoo 73.1%
cornell 87.1%
texas 84.8%
ebay 69.4%

washington 81.1%
berkeley 81.4%
j_caesar 71%
rich_ii 68%

Hen_vi_1 68.7%
reed 87.2%

yahoo_homes 83.3%
BaseBall 83.4%

EXI-Invoice 79.8%
Mondial 85.3%

uwm 90.35%
EXI-weblog 88.3%
homeseekers 86.2%
texas_house 81.7%

nky.xml 83.7%
SWEDEN_meta 93.6%

EXI-factbook 81.5%

145

Appendix-G: XML dummy elements ratio

The following table lists the ratio of the dummy elements in the tested XML

documents which is the same ratio that represents the loss in the structure of

these documents.

XML file name %Dummy elements
ratio

321gone 7.4
Ebay 1.3
Ubid 16.8

Yahoo_Shopping 9.2
Homeseekers 6.2

Nky 3.8
Texas 6.3

Yahoo_Homes 2.2
XMark-1 1.5
XMark-2 0.4
Baseball 1.2
Berkeley 12.2
Cornell 19.3

Michigan 19.5
Texas 4.1

Washington 4.7
Read 4.3
Umw 14.6
Wsu 12.4

CD-Catalog 0.0
DBLP 0.0

EnWikiNews 0.9
EnWikiQuote 0.3
EnWikiVersity 1.2
EnWikTionary 1.1

EXI-Array 0.0
EXI-factbook 0.0

EXI-GeogCoord 0.0
EXI-Invoice 0.0
EXI-weblog 0.0

GB-meta 0.0
Sweden-meta 5.9
Turkey-meta 0.0

Henry IV, Part I 1.6
Richard II 1.4
j_caesar 1.2

Shakespeare 2.4
LineItem 0.0

XBench-DCSD-Normal 0.0
XBench-DCSD-

Small.xml
0.0

146

Mondial 9.2
NASA 0.0

SwissPort 0.0
Tree Bank 0.0

	Introduction
	Introduction
	Research Hypothesis and Research Methodology
	Research Questions
	Motivations and Objectives
	Research Contributions
	Overview of the Thesis

	Research Background
	Introduction
	XML Commencements and importance
	XML document types
	Java API for XML (JAXP)
	XML Retrieval
	XML Query Languages
	- XPath
	- XQuery
	- XLink and XPointer
	- NEXI

	Types of Queries
	Vague Queries
	Chapter Summary

	State of the Art Technology in Compressing and Querying XML Documents
	XML compression techniques
	Queriable XML Compressors:

	Processing Vague Queries techniques
	Problem Identification
	Chapter Summary

	XML Compressing and Vague Querying (XCVQ) Design
	System Architecture
	XCVQ-C Design
	Creating the Structured-Tree & its Abridgment
	Creating the Containers
	Compressing the Containers
	- LZW Compression Technique
	- Gzip Compression Technique

	XCVQ-C Algorithms and Their Correctness
	startElement algorithm
	endElement algorithm
	endDocument algorithm

	XCVQ-D Design
	XCVQ-D Algorithm and its Correctness
	XCVQ-QP Design
	XPath Query
	- Path Matching Expansion
	- Data Value Matching Expansion
	- Function Set Expansion

	Query Decomposer
	Query relaxation
	Ranking
	Decompression

	Chapter Summary

	XCVQ Testing, Evaluation and Discussion
	Testing Strategy
	Testing XCVQ’s Behaviour
	Testing XCVQ’s Structure & Functionality

	Testing Factors
	Data Preparation
	Testing Environment
	XCVQ-C and XCVQ-D Testing
	XCVQ-C and XCVQ-D Testing: Stage-1
	XCVQ-C and XCVQ-D Testing: Stage-2

	XCVQ-C & XCVQ-D Evaluation
	XCVQ-QP Testing
	QFT
	QPT

	XCVQ-QP Evaluation
	Chapter Summary

	Conclusions and future work
	Conclusion
	Recommendations
	Future Work

