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Abstract 

The concerns of global warming are guiding most industries and commercial properties 
towards addressing their energy usage. In large buildings where air conditioning is required, 
there is often a need for “chillers” to control the temperature of the building. This process is 
not environmentally friendly and expensive in terms of energy used and maintenance issues. 
The alternative is to cool buildings using natural resources such as induced wind drafts and 
water extraction from rivers and canal. The latter has not been used with optimum 
effectiveness because the prediction procedures are not sufficiently developed to satisfy 
environmental legislation. The mathematical approaches are unrealistic and extremely 
conservative in their analysis and this causes many valid proposals to be rejected.  
This research is aimed at addressing that situation. It will provide a valid interactive 3-
dimensional analysis procedure that will better evaluate the potential of using any British 
Waterways canal or similar water source for cooling purposes.  
After water has been used for cooling it is returned to the canal in a heated state as a thermal 
plume. It is the boundaries of the plume that must be predicted with reasonable accuracy so 
that environmental legislation is not infringed and livestock is not jeopardised. It is equally 
important to ensure the analysis is not over sensitive so as to result in rejection of valid 
proposals.  Earlier work studied heat distribution but did not consider the thermal discharge 
into still and shallow water, as in a British Waterways canal. The studies below investigate 
several canal sites to evaluate a variety of situations where the discharge plume differs. 
Criteria including discharge direction, volume of water, temperature differences, speed of 
discharge and depth of discharge pipe all play a part in the formation of the plume. As such it 
is possible to develop an understanding of how the thermal plume merges into the still water 
and how the heat is diffused into the general body of water. In conjunction with site 
measurements a laboratory experimental scale model tank was built to replicate the real canal 
site. This allowed data to be varied and measured more readily. Two different types of 
discharge have been the subject of this research- the first being when the discharge pipe is 
located at the surface of the receiving water, the second being when it is submerged deeply 
below the surface. In all cases the temperature and velocity are measured at various points and 
at a variety of depths to provide a three dimensional plot across the mixing zone. In addition 
to the mathematical analysis, thermal imaging was used to predict the heat diffusion profiles 
on the surface of the receiving water in both the canal site and the model tank. CFD software 
is also used to evaluate the distribution of temperature and velocity within the mixing zone. 
The mathematical analysis produced an equation to predict the heat diffusion profile in 
surface discharge. And a number of equations were produced to model the plume path line in 
submerged discharge- relating to temperature and velocity dilution along and across the path 
lines. The relative effects of the bed and free surface proximity appeared significantly in the 
equations. A 3-dimensional model of the size of the plume is presented to demonstrate the 
results.  
The procedure followed in this study will enable the Environment Agency personnel to assess 
the waste heat utilization with greater thoroughness and within a shorter period.   
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1. Introduction 

1.1 Introduction 

The disposal of heated water from power plants and cooling systems into a natural water 

environment is a major environmental problem. Water is normally drawn from natural or 

artificial sources into the cooling system heat exchanger, the cooling water increases in 

temperature within the system and it is ultimately discharged back into the lakes, rivers or 

canals. This results in a rise in the bulk temperature of the surrounding water. This type of 

cooling system is economically low cost since water is the most inexpensive fluid available, 

and is also environmentally friendly in terms of heat disposal. However if the thermal 

discharge affects negatively on the surrounding ambient fluid then the process is called 

thermal pollution. The main effect of the increased in ambient water temperature is the 

reduction of the dissolved oxygen which puts aquatic life at risk. The increase in temperature 

also affects the balance of natural and biological processes in the water.  

There is a large number of studies of this type regarding water mixing and heated water 

discharge into cooler water. But the majority of them are based on assumptions - some use 

experimental model tanks but do not validate with real field trials whereas others only make 

use of mathematical models and again do not validate with field trials.  

In this research a study of heated water discharge into still and shallow water is described 

using a comprehensive technique. A thermal camera is used to measure the heat diffusion 

profile on the surface of the receiving water using a number of British Waterways canal sites. 

The sites are then replicated in a laboratory environment using a scale model tank. The 

combined results are then used to develop a two dimensional mathematical model of heat 

diffusion in surface discharge. This is carried out using variable values of turbulent 

diffusivity. As for submerged discharges, the plume path line, temperature and velocity along 

and across the path line have been identified. Additionally, MATLAB software is used to 

develop the model towards a three dimensional representation showing the size of the plume 

throughout the canal. The study also used CFD software in the analysis of both types of 

discharge, surface and submerged.  

Presently, the University of Huddersfield has three sites licensed to extract water for cooling 

purposes. All these sites have comprehensive records and all show that the process is safe for 

aquatic life. However, British Waterways’ one dimensional mathematical model suggests they 

will not be safe and if the model is over-conservative in its prediction then British Waterways 
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may reject licensing applications that are in reality safe. It is this situation that demands a 

more realistic prediction tool be developed; a tool that is readily understood, adequate for the 

level of applications and easily manipulated to represent the varied situations that are likely to 

be experienced.  This research is limited to the study of heated water discharge into a body of 

still and shallow receiving water.  

 

1.2 The Nature of the Problem 

The current architectural trend is to build large complexes and manage them centrally. 

Numerous commercial organisations occupy small spaces in large office blocks where 

computing facilities are common – all generating heat. To control overall building 

temperatures it is a necessity to include a cooling system in the building plans at the outset. 

Traditional air conditioning makes use of chillers to cool the system but if the building is 

located in close proximity to a British Waterways canal then an environmentally friendly 

alternative may be available. British Waterways currently have a number of sites around the 

country where canal water is used for cooling systems thus eliminating the need for chillers. 

This is an area of business which British Waterways wish to expand for both environmental 

and commercial reasons. Their current evaluation process is over-conservative and leads to 

many applications being rejected. As such they wish to re-evaluate their assessment method.  

Whilst British Waterways are responsible for the evaluation of applications for abstraction 

licences, local Environment Agencies are responsible for policing of water abstraction and 

water quality in accordance with The Surface Waters (Fishlife) (Classification) Regulations 

1997. These regulations provide classification and guidance for inspection, sampling and 

analysis of pollutants in inland freshwaters with the intention of protecting and improving the 

environment of aquatic life.  

New applications for proposed abstraction and discharge licenses are assessed and authorised 

by BW and are regularly monitored by the local Environment Agency for compliance with the 

license and other appropriate environmental regulations. Therefore BW wish to undertake a 

series of investigations to gain a more thorough understanding of the effects of the mixing of 

the discharged water and the effect of heat transfer to allow sufficiently robust assessment of 

applications and consequent energy savings. It is intended to produce an optimal design  for 

the discharge pipe in order to satisfy the environment agency regulations and derive a 

mathematical model to predict the heat diffusion profile within the canal. 
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1.3 Canal Sustainable Cooling Solution 

British Waterways protects 2200 miles of canal across UK which can be used in water 

cooling systems, see Figure 1.1. 

BW estimates an additional 1000 businesses on canal sites could use canal water for cooling 

purposes. According to British Waterways official web site this will result in a saving of £100 

million on annual energy bills and a reduction of carbon dioxide emissions by 1 million 

tonnes each year. This value is equivalent to 400,000 family sized cars being taken off the 

roads. British Waterways benefit from the income of canal water sales which they reinvest in 

canal maintenance. All the figures used in this clause plus the comments are derived from 

British Waterways’ official website. 

 

 

Figure 1.1: British Waterways Canal 

 

1.4 Environmental Consideration 

Water is usually withdrawn from the canal into the heat exchanger of the cooling systems and 

returned to it after use; the returned water has a temperature greater than the ambient 

temperature of the canal which will cause a rise in canal temperature particularly in the region 

close to the outfall.  
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As discussed, water temperature influences levels of oxygen and nutrients which in turn 

influence aquatic life. To provide an example of the environmental impact of thermal 

fluctuations, a reduction of the optimum temperature by 5˚C can reduce the growth rate of 

catfish by 50%, and a localised rise in canal temperature can influence the movement pattern 

of fish as they flee ‘hot zones’ (Hoar, 2005).  

Although, the water temperature is an important positive influence in aqua physiology, 

distribution and lifestyle, the increase of temperature above a certain degree (28˚C in BW 

canal) becomes a hazard to aquatic life. The dissolved oxygen and the solubility rate of 

oxygen will reduce when the canal ambient temperature exceeds 28˚C, until life is no longer 

sustainable. According to the Environment Agency if the concentration of oxygen falls below 

7mg/l for more than 50% of the time outside the mixing zone, then fish are at risk.  For 

salmonid waters the concentration should not fall below 9mg/l. Additionally, the changes in 

the bulk temperature of the canal disrupt the chemical and biological balance of the canal, 

thus reducing the quality of the water. This demonstrates the importance of temperature 

control. 

 

1.5 Policy and Regulations 

As discussed, the Environment Agency is responsible for policing of water abstraction and 

water quality in accordance with The Surface Waters (Fishlife) (Classification) Regulations 

1997. These regulations provide the framework for inspection, sampling and analysis of 

pollutants for inland freshwaters. The key points applicable to cooling water abstraction to 

prevent the loss of aquatic life and de-oxygenation of the water are (Environment, 1997):- 

• For cyprinid (non-salmonid) waters the temperature downstream of the point of 

discharge should not be raised by more than 3 degrees Celsius on the edge of the 

mixing zone. 

• The temperature downstream of the point of discharge, at the edge of the mixing zone 

must not exceed 10oC during the breeding season for species which require cold water 

for breeding. 

• The maximum temperature shall never exceed 28 degrees Celsius for cyprinid waters. 

Note: 

These figures are further restricted for salmonid waters. 
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From an environmental perspective, schemes are acceptable to BW provided that 

(Environment, 1997):- 

• The temperature of the receiving water outside the mixing zone should not be raised 

by more than 3°C and should never exceed 28°C. 

• These temperatures are reduced to 1.5°C and 21.5°C respectively for salmonoid 

waters. 

• The mixing zone is the area around the outfall outside of which the temperature 

standards do not apply. Guidance from the Environment Agency or Scottish 

Environment Protection Agency (SEPA) defines the size of the mixing zone. 

The mixing zone, as a general rule, depends upon the ability of fish to move away from any 

unfavourable conditions around the outfall. It should not cross the full width of canal at the 

water surface and must leave at least one meter from the opposing bank to allow free 

movement of fish. Restrictions are also applied to the water velocity which must not exceed 

the standards for navigation provided in “The Code of Practice for Works Affecting British 

Waterways”.  

 

1.6 BW 1Dimensional ISIS Model 

During the visit to the BW Research Centre they explained their background studies carried 

out to date and demonstrated the use of ISIS software and their simplified version using an 

Excel spreadsheet. They provided the required introduction and background to the 

investigation.  

Evaluation for abstraction was carried out by BW using ‘ISIS’ software which is considered 

to be the water industry standard software for evaluation of hydraulic flow and water quality. 

However this software is designed to model open channels in rivers and estuaries where high 

flow rates and high differential water levels are normally experienced. These are not normal 

canal conditions where flow close to zero and variations in water levels are relatively small. It 

is reported by BW that this has led to inconsistencies against the results obtained using the 

software and the results obtained from monitoring of certain existing installations. ISIS does 

not consider the local effect of the plume assuming the discharge to be fully mixed along the 

length and breadth of the canal. The Software is two parts ISIS Flow and ISIS Quality: 
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ISIS Flow: 

ISIS Flow is used to model the hydrodynamics of a loop or branched network which includes 

a variety of hydraulic structures, locks, sluice gates, bridges etc and the results stored for 

further analysis using ISIS Quality 

 

ISIS Quality: 

ISIS Quality is a separate program modules used to model water quality in open channels 

using the hydrodynamic data provided from the ISIS Flow analysis to model the 

concentrations of water pollutants using finite difference approximation to Fick’s Law for the 

advection-diffusion equation.  

 

Every lock through the canal network is numbered for identification purposes and the distance 

between the locks is divided into lengths known as ‘chainage’. The canal can then be 

surveyed for dredging purposes and the cross section at each chainage recorded. This data 

allows an approximation of the volume of water and surface area between locks to be 

calculated. 

The published literature for the ISIS software gives a good starting point for any 

investigation. If flow occurs in an open channel, the calculations can be split into two areas: 

• Hydraulic flow 

• Heat transfer 

The application of ISIS software firstly considers the hydrodynamic model for flow in open 

channels. Data capture is regulated over 20sec time intervals throughout a 168hour period to 

ensure balanced conditions are achieved. Readings are then taken on flow in open channels.  

Fick’s law and the advection-diffusion equation are then applied to refine the theories used in 

the software. The results were therefore appropriate for use in canal applications- producing 

simplified Excel spreadsheets which required the input of basic data. 

 

1.7 Research Questions 

1.7.1 Hydraulic flow 

What is the size of the discharge plume/mixing zone? 

What determines the size of the mixing zone? 
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What is the effect of the discharge flow rate into canal? 

What are realistic values for the discharge turbulent diffusivity? 

What is the effect of the canal depth on the size of the plume and velocity profile?  

What is the effect of the discharge pipe depth, free surface and canal bed on the plume and the 

velocity profile? 

How does the relative proximity of the inlet/outlet configuration affect flow and recirculation? 

How does the discharge velocity effect plume size and thermal diffusion? 

How are plume flow characteristics effected by magnitude of heat load? 

What is the effect of pipe diameter on the flow velocity and plume temperature dispersal? 

What determines the plume path line? 

 

1.7.2 Thermodynamic problem 

How is temperature distributed in 3D through discharge plume? 

What is the effect of ambient temperature variations? 

How does the relative position of the inlet/outlet configuration and flow/recirculation affect 

temperature? 

Does the temperature gradient across the plume and length of the plume relative to the width 

of the canal ensure that fish can bypass the plume? 

What are the effects of the discharge pipe depth, the free surface and the canal bed on the 

temperature profiles? 

 

1.8 Aims of the Research 

• Produce a viable, uncomplicated and accessible model that may be used to evaluate all 

British Waterway’s standard systems and satisfy Environment Agency regulations. 

• Address varied discharges of any heated water discharge into a shallow and still water 

environment.  
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1.9 Objective of the Research 

The following are the main objective of this study: 

• Develop a number of equations to predict the thermal plume profile in shallow and 

still water   

• Investigate two types of thermal discharge; surface and submerged. 

• Carry out a detailed investigation into the behaviour of the thermal discharge into the 

canal and the subsequent rise in water temperature. 

• To investigate the interaction of the discharge plume and heat transfer within the 

canal. 

• Investigate dissipation and determine the thermal mixing area and size of the plume. 

• Investigate further the existing licenses for abstract / discharged canal water (used in 

the operation of cooling systems) at a number of British Waterways canal sites 

experimentally and theoretically to demonstrate the compliance of the sites to the 

requirements of the Environment Agency.  

• Model the thermal plume experimentally, computationally and theoretically. 

• Validate the predicted data against the laboratory experimental data and actual canal 

site data  

 

1.10 Thesis Outline 

This chapter provides an introduction to the subject. The following chapter will review the 

major analytical, computational and experimental works on thermal discharge currently 

available. In Chapter 3, the preliminary and refined case studies are discussed and the 

experimental works on the real canal site are presented. Chapter 4 discusses the laboratory 

experimental work and the canal site simulation with the environmental scale model tank. 

Chapter 5 describes the use of thermal imaging in the study and presents thermal images of 

the thermal plume on the canal site and the model tank. Computational of Fluid Dynamics 

software is applied in Chapter 6 to predict the behaviour of the thermal plume. Chapter 7 

describes the theoretical analysis and all derived equations which predict the behaviour of the 

thermal plume. The results obtained from the previous chapters are compared, discussed and 

presented in Chapter 8. In Chapter 9 the concluding remarks of the study are presented. The 

last two chapters 10 and 11 contain references and appendices respectively. 
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1.11 Methods and Contribution 

The current thermal discharge models cannot be applied on BW’s canals, because, as will be 

explained in the following chapter, they are mainly applicable to shallow flowing rivers or 

deep stagnant lakes.  

This research will produce a model to predict the behaviour of the thermal plume in British 

Waterways canals and will aim to fill this gap. The models developed in this research apply 

all three types of thermal plume analysis; theoretical, computational and experimental. The 

work started with experiments on canal sites and data collection within the mixing zone. 

Temperatures were measured by thermocouples at grid points and various depths. Turbine 

flow meters were used to measure velocity at each point. In addition air temperature and wind 

speed are measured. Thermal imaging was used to see the heat diffusion on the surface of the 

canal and was compared to digital camera images. A laboratory experimental model tank was 

built to simulate the canal site and FLUENT software was used to model the flow and 

temperature. A number of equations were derived to predict the temperature and velocity 

profile and present a 3D model of the thermal plume. 

 

2. Literature Review 

2.1 Introduction 

Initial background research was undertaken via internet searches for technical papers and 

previous experimental work carried out in this area plus textbook reading of appropriate 

technical subjects. The searches revealed a number of interesting articles which are 

referenced. They appear to be mainly concerned with the modelling dispersal of pollutants 

from effluent discharge and/or management of discharge into large rivers, lakes and estuaries 

and modelling the effects of tidal mixing.  

In contrast, the requirement of BW is to determine surface and submerged temperature 

distribution and make an assessment of discharged heat load into canal. Discharge of warm 

water into a shallow canal occurs with little or no flow and hence mixing only occurs due to 

the turbulent discharge within a localised area and the remaining heat dissipation occurs by 

natural convection. No forced mixing occurs outside the localised area of the plume other 

than dispersal due to prevailing wind conditions. 
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2.2 Thermal Discharge 

Typically, a thermal discharge source is a cooling system or power plant. This research is 

mainly focused on the heated water discharge from cooling system heat exchangers through a 

pipe into a body of shallow and still receiving water. The flow is turbulent and its driving 

forces are buoyancy and momentum. There is a discontinuity of temperature and velocity as 

the thermal discharge merges with the receiving water. The heated water discharged generates 

a strong shearing with the still receiving water. The shear force moves the ambient still water 

around the edges of the thermal discharge, whilst the still receiving water acts to reduce the 

speed of the discharge at the boundary. This process takes place within the mixing zone as the 

thermal discharge moves downstream. Distribution takes place in two directions, inward 

towards the centreline of the thermal discharge thus reducing the velocity and outward 

towards the still receiving water to entrain more ambient water into the mixing zone. 

Momentum is therefore being transferred continuously from the thermal discharge to the outer 

region causing the stationary and slow moving water to accelerate and the inner high velocity 

region to decelerate as it loses momentum (Demissie, 1980). The combination of the shear 

force generated at the boundary and turbulent mixing modifies the velocity profiles 

(Chadwick, 2004). The thermal discharge could be a jet or plume, and these two words are 

sometimes used interchangeably. The following are the correct definitions of the buoyant jet 

and pure plume. 

 

2.2.1 Buoyant Jet  

A buoyant jet or forced plume is a flow of water with low density discharged with high initial 

velocity through an orifice into a receiving water of higher density. The thermal discharge in 

this case has high kinetic energy and momentum. The buoyant jet flow is fully turbulent 

whenever its efflux Reynolds number, based on efflux velocity, orifice dimension and fluid 

kinematic viscosity is sufficiently large (Jirka, 2004). 

 

2.2.2 Pure Plume 

The thermal discharge called pure plume occurs when low density water discharges with a 

low initial velocity through an orifice into higher density of receiving water. In this research 

the thermal discharge studied is a pure plume.  
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Jets and plumes are classified to four different regions as follows: 

1. Core region: a small region around the discharge outfall in which the temperature and 

velocity are very high and remain nominally constant. 

2. Entrainment region: in this region the centreline velocity and temperature are decreased 

significantly, the lateral spread is much greater than vertical spread.  

3. Stable region: in which the vertical entrainment is reduced or ended, the plume depth 

(thickness) is very small as the heated water spreads on the surface, the temperature remains 

relatively constant and velocity drops sharply.  

4. Heat loss region: the end of the plume or the discharge may no longer be considered as a 

plume. The lateral spread is very large and provides a large surface of convective heat 

transfer. In this region temperature reduces to reach ambient water temperature. 

 

2.3 Types of Discharge 

Thermal discharge can be classified according to the location of the discharge pipe, the 

discharge pipe dimensions and cross section, the number of diffusers and so on. The main two 

types of thermal discharge into shallow and still receiving water based on locations are 

submerged and surface discharge. 

 

2.3.1 Submerged Discharge 

The structure design of the discharge pipe is varied from one site to another, because there are 

different types of structure. In this section the submerged discharge is described. The 

discharge pipe locates below the free surface of the canal with a certain depth see Figure 2.1. 

This type of thermal discharge is complex because the discharge pipe is submerged below the 

free surface of the receiving water and the thermal plume cannot be observed. In thermal 

submerged discharge the plume will be influenced by the free surface and the canal bed. It is 

deflected towards the free surface with increasing distance downstream because of the lack of 

entrainment in the region between the centreline of the plume and the canal surface. The 

deflection reduces as the depth of the discharge pipe increases. This is due to the increase of 

entrainment in the area above the centreline of the plume. Entraining ambient water into the 

plume region reduces the velocity of the plume in that region, so the velocity in the region 
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above the centreline of the plume has higher velocity than the lower region. Figure 2.1 

illustrates the deflection of the plume in a shallow and deeply submerged discharge.  

 

 

Figure 2.1: Submerged discharge 

 

2.3.2 Surface Discharge 

In surface discharge the discharge pipe is semi-submerged and the distance between the 

centreline of the plume and the free surface of the receiving water is equal to the radius of the 

discharge pipe. Surface discharge is preferred in some cases as the majority of heat transfer to 

the atmosphere is by evaporation and radiation. The receiving water is less affected by surface 

discharge as the heated plume remains on the surface, so only a small amount of heat 

distributes to the layer below the centreline of the plume. Therefore aquatic life can safely 

pass through the undisturbed space between the bed and plume. This type of discharge is easy 

to investigate as the discharge pipe is located on the surface and the thermal plume can be 

observed. In addition the vertical velocity and buoyancy effects are limited. The Central 

Services Building at the University of Huddersfield is given as an example of surface 

discharge as thermal plume of the flow clearly defined on the surface; this is illustrated in 

Figure 2.2.  
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Figure 2.2: Surface discharge 

 

2.4 Previous Studies 

As noted above, studies on thermal discharge are classified into three categories, theoretical 

analysis, computational analysis and experimental work. In the following sections past 

thermal discharge studies are explored beginning with general reviews followed by each 

category: 

 

2.4.1 General Reviews 

Much literature on thermal discharge studies is available but this review focuses on those 

studies which are most relevant to the theories of the current study. 

Initial textbook reading investigated the mathematics of diffusion and fluid dynamics. The 

Mathematics of Diffusion (Crank, 1970) is a good mathematical textbook covering the 

standard basics of heat distribution by convection, conduction and radiation. The text outlined 

classical theories covering the heat advection diffusion equation, heat diffusion coefficients 

calculations, etc. The theories of Crank are most applicable to the surface discharge and non-

buoyant jets. Cranks procedure is used in the current study to model the surface discharge. 
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Additional studies regarding fluid flow and heat transfer were also undertaken to underpin 

this research. Wastewater Engineering – collection, treatment, disposal (Metcalf & Eddy, 

1972) discusses the fundamentals of fluid mechanics in open channels. It explores the work of 

Robert Manning in the nineteenth century and specifically Manning’s equation which is 

commonly used for flow calculations in open and closed channels. This equation provides 

typical values for the coefficient of roughness as applied to differing surfaces including 

“canals with rough stony beds [or] weeds on earth embankments”. The Manning’s equation 

and coefficients are used in the ISIS software model. Wastewater Engineering covers the 

basic fluid theory and flow in open channels and concentrates heavily on the environmental 

discharge, pollutants, bacteria and waste water treatment. The text discusses the effect of the 

temperature of wastewater and its impact on aquatic life, chemical reactions and reaction 

rates. It also describes the effect of effluent disposal by dilution and disposal into lakes and 

rivers and introduces the topic of mathematical modelling of plug flow in river mixing, 

estuary diffusion and the continuity equation for initial dilution of the discharge from a single 

or multi-port diffuser. However, the analysis of temperature dispersal through the plume and 

the extent of turbulent flow of the plume are not covered. The derived mathematical model, 

states that ‘it is assumed that waste is evenly distributed over the cross section of the river but 

this may be some distance from the discharge and that if the river is not extremely turbulent 

no mixing occurs along the axis of the river and the model should be regarded as plug flow’. 

For the BW canal, no flow occurs within the canal and therefore a steady state fully mixed 

approach has been assumed.  

Thermal Effluent Disposal from Power Generation by (Zaric, 1978) is a valuable textbook in 

thermal discharge studies. It contains lectures presented at the international advanced course 

on Heat Disposal from Power Generation held August, 1976 in Dubrovnik, Yugoslavia. The 

aim of the book and its related course is to familiarise the participant with alternative methods 

of heat disposal as well as with the most recent techniques of engineering analysis and design 

necessary for their implementation and environmental evaluation (Zaric, 1978). The author 

presented each lecture in the course as a distinct chapter.  

These three textbooks each take a different approach. One discusses the mathematics of 

diffusion, another the basics of fluid dynamics and waste water management, and the third 

compiles lectures presented a conference on heat disposal. 

The available textbooks on thermal discharge, waste water management and turbulent flow 

are vast and all provide an excellent source of reference on the basics of thermal diffusion, 
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jet/plume properties, heat and mass transfer. The reader can consult the references and 

bibliography to appreciate this. In the following sections the literature review will focus on 

the technical papers published in this field. Because of the large number of publications it is 

intended to discuss only the work of the people who are mainly known in this field and the 

works that most closely relate to the current project. 

 

2.4.2 Review of Theoretical Analysis 

As was mentioned in the previous sections most available studies on thermal discharge 

describe incidences when the receiving water is deep and stagnant such as oceans and lakes or 

discharges into shallow and flowing water such as rivers. The location of the discharge pipe 

(submerged or on surface) also impacts on the study. The majority study surface discharge 

since this is easier to predict. In this study surface and submerged discharge are discussed 

with most focus on the latter. Taylor, (1921) studied diffusion in continuous and 

discontinuous motion ambient fluid. He developed a model to predict the molecular diffusion 

coefficient and states that the rate of heat transferred in x direction is determined by the rate of 

increase of the mean value of the square of the distance, parallel to the axis of x, which is 

moved through by a particle of fluid in time t, equation 2.1.  
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=  

 

Where, σx² is the variance of a (longitudinal) spatial cross sectional average solute 

concentration profile. (Abramovich, 1963) cited the first attempt of computing the jet 

trajectory in cross flow by (Baturin and Shepelev) in 1934. They obtained the velocity along 

the centreline of the jet geometrically using velocity vector for the ambient and the jet. 

Subsequently Abramovich (1963) carried out same analysis used by (Baturin and Shepelev) to 

determine jet centreline velocity in cross flow using flow rate rather than area. Later attempts 

continued to determine the thermal discharge behaviour in cross flow. (Bowley and Sucec, 

1969) produced a two-dimensional model to predict the jet trajectory in variable or uniform 

cross flow using conservation of mass. But this is not enough to model the plume trajectory 

without the momentum equations. (Launder and Samaraweera, 1979) developed a model to 

predict the spreading rate of jet in cross flow. (El-Baz, et.al, 1996) investigated the 
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development of surface jet in a current. They produced equations of shear flow for forward- 

marching finite volume. The relevant of the above papers gives a good point about the effects 

of the thermal discharge directions across or along the canal. However the discharge direction 

is less important in the current study as the ambient water is still. 

Thermal discharge into deep still water has been studied widely by the researchers. In this 

type of thermal discharge the majority of studies focus on surface discharge where the 

discharge pipe is located at the surface of receiving water. (Patankar and Spalding, 1972) 

developed a procedure to solve the three dimensional parabolic equations. This work gave the 

researchers of thermal discharge a positive step to solve the equations of motions. Three 

Dimensional Heated Surface Jets by (Stolzenbach and Harleman, 1973) solved four governing 

equations in their model; continuity 2.2, longitudinal momentum 2.3, lateral momentum 2.4 

and thermal energy 2.5 equations as follows:  
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It is assumed that the turbulent transfers in the x directions are neglected whilst lateral and 

longitudinal pressure gradients resulting from the temperature gradients are retained (the first 

term on the right hand side of the momentum equations). In the lateral momentum equation 

the pressure gradient is balanced by the mean convective terms that embody the lateral 

gravitational spreading, the Boussinesq assumption is also used in this work (Stolzenbach and 

Harleman, 1973). The authors used order of magnitude arguments to simplify and solve the 

elliptic equations. Although their model approved and satisfied the experimental analysis, the 



36 
 

assumptions of the lateral momentum equation neglected the turbulent transfer terms and 

therefore could produce unsatisfactory results. This model is restricted to the application of 

thermal surface jets into deep water. 

(Launder and Spalding, 1974) solved the transport equations and governing equations 

numerically. They obtained the values of the two turbulent quantities, the turbulence kinetic 

energy k and turbulence energy dissipation rate ε. (Launder, et al, 1975) developed a method 

to determine the Reynolds stresses in turbulence model by solving the transport equations. 

(Launder, 1975) add gravitational effects and buoyancy to pressure correlation terms in the 

transport equations. This work combined with the proposal developed by (Launder, et al, 

1975) and (Launder and Spalding, 1974) formed a comprehensive method to determine all the 

constants in the turbulence model. The studies of jets in stagnant ambient by (Launder, et. Al, 

1975) predicted the shear stress and normal stress. From the above studies and their attempts 

to convert the elliptic equations to parabolic, it is understood that the thermal plume profiles 

have parabolic shapes. 

   

2.4.3 Review of Computational Work 

There is much available CFD software to model heat and fluid flow. ISIS is software 

developed by British Waterways senior engineers to model heat diffusion in the canal. An 

introduction on ISIS has been given in the previous chapter. CORMIX1 software includes 

interesting figures showing the discharge of a submerged vertical plume. This is primarily 

concerned with the geometry and dilution of effluent into deep water rather than the 

application to BW canal. It presents the effect of turbulent buoyant mixing in stagnant water 

and ambient density stratification of a continuously discharged effluent. (Pinheiro and Ortiz) 

investigated the use of CORMIX 1, PHOENICS and PLUMAC 2.2 in analysis of heated 

water discharged into still body of water.  They proved that the results by using CORMIX 1 

and PLUMC 2.2 have a good convergence and better adjustment than PHOENICS. FLUENT 

is one of the most popular CFD software used to model fluid flow and heat transfer. Neither 

of the CFD packages used models thermal plumes into still and shallow receiving water. The 

significance of reviewing these types of software is to make the reader familiar with some of 

the available software in this field. In the current study FLUENT software used to model the 

thermal plume into a British Waterways canal.  
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2.4.4 Review of Experimental Work 

Numerous experimental studies are available on thermal discharge into deep still and shallow 

flowing ambient. Several of these studies are reviewed in this section starting with flowing 

ambient. The experimental technique used in the current study has been used by (Campbell, J. 

F. and Schetz, J. A., 1971 and 1972). They studied the behaviour of thermal jet discharge into 

waterways with current. They used dyed water in the experiments and installed two cameras 

on the side and top of the model tank to record the behaviour of the thermal plume and 

trajectories. (Cederwall and Brooks, 1971) investigated buoyant jets in still and flowing 

environments. Their model contains two main parameters the densimetric Froude Number and 

the ratio of discharge pipe diameter to the depth of receiving water. (Kannberg and Davis, 

1974) investigated the behaviour of thermal jets deeply submerged in stagnant and co-moving 

water. They produced their model experimentally and primarily involved the densimetric 

Froude number without reference to the bed effects and the location of discharge pipe. Flow 

of Surface Buoyant Jet in Cross Flow by (Anwar, 1987) is the best paper carried out in 

eighties in terms of the experimental equipment employed. Its model tank was very long 

(50m). This paper predicted the profile for temperature and velocity at various layers through 

the depth of the model tank. It was found that the jet axis at all different depth is described by 

equation 2.6: 
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Where x, y are distances, hj is the cross section height of the discharge pipe (a rectangular 

discharge pipe), while A and n are constants. The three dimensional profiles produced in this 

study is not applicable to stagnant and shallow receiving water. 

(Qi, et al, 2001) models turbulent jets in cross flow. Their study focused on the ratio of 

Reynolds number for the jet and the ambient as well as the momentum flux ratio. The above 

experimental studies gave good steps to undertake the laboratory work for the current project 

by conducting a model tank, using dyed heated plume and a dimensionless densimetric 

Froude number Fd in simulations.  They also indicted to the Fd as a main affected parameter 

so it is taken in account for the new derived models. 
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The above studies revision described horizontal discharge. Turn now to studies where the 

discharge pipe is located on the bed at an angle relative to with the horizontal bed towards the 

surface. (Parr and Sayre, 1979) investigated multiple jets located at the bed of shallow 

flowing receiving water. The jet direction was not horizontal; the angle between the jets and 

the bed was 20˚. They used most of the effected parameters to derive the model. (Seo, et al, 

2001) studied the non horizontal submerged jets with angles into shallow receiving water with 

strong currents. The authors used four types of diffusers in their experiments; a co-flowing 

diffuser, tee diffuser, staged diffuser and alternating diffuser. They solved three governing 

equations; continuity and two momentums, the model may be biased without the energy 

equation. (Xin, 2000) investigated non horizontal multiple jets into shallow flowing receiving 

water. The study presented a numerical analysis of the jets behaviour using Hybrid Finite 

Analytical Method (HFAM). The obtained results were similar to (Parr and Sayre, 1979) 

model with a different method. The studies mentioned above can not be applied to the canal 

sites where the discharge pipe is horizontal. 

Further studies on thermal discharge into cross flow are available when the discharge pipe is 

vertical toward the surface. In this case the discharge pipe will be located on the bed. (Ungate, 

et al. 1975) studied the vertical discharge in low Reynolds number. The model was 

significantly focusing on the Reynolds Number (Re), they concluded that the modelling of the 

turbulent jet is acceptable for Re > 1500. (Lee, 1980) investigated the behaviour of the plume 

discharged vertically into shallow water based on experimental data. The study used curve 

fitting techniques. (Yu-hung and Wen-xin, 2005) presented a numerical model of vertical 

discharge into shallow water. They solved the governing equations and presented their model 

as function of densimetric Froude number and the ratio of the discharge pipe diameter to the 

depth of receiving water. Regardless of the benefits which have been taken from the above 

papers such as the ways that producing the plume profiles, temperature and velocity ratios, 

and the papers presented to show the readers different types of discharge pipe structures. 

There are many experimental studies on thermal discharge into deep and still water. The 

mathematical modelling of three dimensional heated surface jets by (McGuirk and Rodi, 

1978) is the widest study in the late seventies in this field and centred on discharging heated 

water into stagnant and deep water. The paper solved the five governing equations: the 

continuity equation 2.7, two momentum equations 2.8 and 2.9 in x, y directions, thermal 

energy equation 2.10 and the equation of state 2.11. The authors made many assumptions to 

simplify the elliptic equations to parabolic and to simplify the momentum equations. They 
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state that because the flow extends much further in the longitudinal and lateral directions than 

in the vertical, gradients in the vertical direction are much larger than in the longitudinal and 

lateral. As a consequence, turbulent transport is important only in the vertical direction. 

Accordingly the turbulent momentum and heat fluxes in the longitudinal and lateral directions 

have been neglected (McGuirk and Rodi, 1978): 
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These assumptions simplified analysis of the results obtained as they neglected the lateral and 

longitudinal turbulent transfers and heat fluxes. The five simplified equations contain seven 

unknowns, velocity in x, y, and z directions, temperature, two shear stresses and one heat 

flux. To set the number of governing equations equal to number of variables, two transport 

equations are used, these equations were modelled by (Launder, 1975, 1976)  and (Launder, 

Reece and Rodi, 1975). Since the transport equations contained the turbulence parameters k – 

ε, two more equations were needed to solve them. The k – ε turbulence equations have been 

used to determine these two quantities. The finite difference method was used to solve the 

nine governing partial differential equations. Although this study included wide analysis, the 

model is limited to applications of warm water surface discharge into deep stagnant water. 

The study covered a number of previous works carried out in this field up to 1978 and 

commented on the lack of applications and experiments found in those works. The current 

research has got benefits from the ideas used in the above studies such as the effects of the 

parameters; density, gravity, and turbulence model on the plume behaviour. 
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(Horikawa, et al. 1979) investigated discharge of heated water in the surface zone using the 

diffusion coefficient; this was an encouragement to use the diffusion and turbulent diffusivity 

in the current research surface model. (Sarikaya, et al. 1995) produced a two-dimensional 

model of thermal discharge into the sea using oceanographic density. The study used 

exponential function and a computer program called THERMOD, no details have been given 

on the way that the program works. Development of a 3-D model for predicting warm water 

discharge diffusion by (Nakashiki, 1996) refers to the model tank testing of the turbulent 

mixing of warm water discharge jets from a multi-port outlet. The paper covers the 

introduction of the model tank testing techniques undertaken and its relevance to prediction of 

the flow of submerged discharge. It also suggests possible future work for multi-pipe 

discharge for use in modelling estuary and power station discharge. The paper indicates the 

use of Laser Doppler Velocimetry (LDP) to measure flow. It was interested idea to use the 

LDP for the velocity measurements in the current research, but could not because of lack of 

facilities in the laboratory. 

 

2.4.5 Relevant Studies 

In the previous clauses studies of thermal discharges have been discussed. These studies are 

classified into three categories: theoretical, computational and experimental. It can be said 

that none of them are applicable to the theory of the current project i.e thermal plume 

discharge into shallow and still receiving water. However the search on the previous studies 

and literature review revealed some work which is more relevant to the current study. The 

following describes studies on thermal discharge into shallow and still water. (Cederwall and 

Brooks, 1971) investigated buoyant jets into a stagnant environment. Their model primarily 

involved the densimetric Froude Number. The study did not consider the effects of the 

receiving water’s bed. (Kannberg and Davis, 1974) studied deep submerged multiple buoyant 

jets into stagnant water based on the densimetric Froude Number and the discharge pipe 

diameter. Again the study did not indicate to the effects of the bed. The Horizontal Round 

Buoyant Jet in Shallow Water by (Rodney, et al. 1988) produced models of jet centreline 

paths and temperatures along that centreline. The literature review of this study covered the 

majority of works done in this field between 1972 and 1986, especially submerged discharge. 

The study considered all the affected parameters on thermal discharge, no discussion on the 

lateral profiles have been given. In general all these works are involved high discharge 

velocity jets and not plumes. Integral Model for Turbulent Buoyant Jets in Unbounded 
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Stratified Flows (Jirka, 2004) is the latest work studying thermal submerged discharge. Both 

types of discharge- plume and jet -are studied but the discharge plume into shallow and still 

water is not discussed deeply. This group of studies reviled with more information which 

have been used by the current project mainly the effects of the receiving water bed and depth, 

these were not been mentioned by the studies in the previous sections.  

In general the studies in previous sections were investigating thermal water discharge into 

receiving water with theories similar to that in the current study which also discusses the same 

thing. The studies followed various methods to predict the heat diffusion and velocity profiles 

of the plume, so the conclusion of all the studies were the determination of temperature and 

velocity within the thermal discharge. But in every study there was at least one of the major 

conditions which was different. The following are some of the conditions which made the 

other studies not applicable to the canal and different with what has been done in this project: 

Thermal discharge 

• Some of them were investigating jets rather than plume 

• Multi diffusers discharge pipe, whilst this thesis discuses single pipe 

• Vertical pipe rather than horizontal 

• Discharge pipe located inclined with the bed  

Receiving water 

• Deep and still such as seas, whilst BW canal is shallow 

• Shallow and flowing such as rivers but canal water flow very close to zero 

 

2.5 Mixing in Turbulent Flows 

The study of turbulence flow is troublesome as it requires a complicated mathematical 

procedure and consideration of the flow’s dynamic. (Sherwin and Horsley, 1996) state that 

when considering forced convection the definition of the convective heat transfer coefficient 

for any particular situation of the Reynolds analogy is based on two assumptions; 

That the diffusion of momentum in a turbulent flow is equal to the thermal diffusion, that the 

thermal and temperature profiles of the flow are identical. 

That turbulent behaviour exists throughout the whole flow, to the surface of a wall where the 

heat transfer exists.  
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The diffusion coefficients (Dx, Dy and Dz) appear in the heat advection diffusion equation 

2.12. This is a summation of the molecular diffusion plus the turbulent diffusivity. These are 

the main factors in fluid mixing. All the relevant parameters in the equation 2.12 are a 

summation of the fluctuating value plus mean value. 
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2.6 Thermal Discharge Simulation 

The main requirement for a thermal discharge simulation is the equality of the densimetric 

Froude Number 2.13 for model (tank) and prototype (canal) and the equality of discharges 

temperature (Ungate, et al. 1975) 
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Where (Fd) is the densimetric Froude Number, (U) is the discharge velocity, (ρa) is the canal 

water ambient density, (ρ₀) is the discharge water density, (g) is gravity and (D₀) is the 

discharge pipe diameter.  There are parameters that cannot be kept equal for the model tank 

and canal. Such parameters include the discharge velocity, discharge pipe diameter, canal 

width and canal depth.  

Where the discharge velocity into the canal is (Up) and for the model (Um), the velocity ratio 

for the model and prototype Ur, results in equation 2.14:   
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The density of water used in the model must equal the prototype (canal) water density with 

the same ambient temperature. Therefore Equation 2.14 will produce Equation 2.15: 
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For any thermal discharge simulation the reducing scale must be known to then obtain the 

discharge pipe diameter for the model (D0m) and all the other dimensions from which to build 

the model tank. The discharge velocity (Um) can be calculated from the Equation 2.16.  

 

3. Case study 

3.1 Preliminary Case Study 

3.1.1 Introduction 

For a number of years the University of Huddersfield has successfully utilised canal water as 

the primary source for its building cooling systems. The University now operates three 

independent sites, two located alongside the Huddersfield Narrow Canal and the third on the 

Huddersfield Broad Canal. All three sites vary in the capacity and configuration of the inlet 

and outlet. Historical data has been collected which may be used as a basis for the 

investigation. In this chapter investigations are carried out of all three sites. The positions of 

each site and the cooling systems are described. A survey was performed to collect data 

within the mixing zone. Grid points were graduated at different layers and then velocity and 

temperature measurements were placed in grids. In addition, thermograpghy studies were 

carried out to predict the temperature distribution on the surface of the canal and defined the 

mixing zone. 

 

3.1.2 Sites Location 

2.1 Central Services Building – Huddersfield Broad Canal 

The University library and main computing facilities are located within the Central Services 

Building (CSB) which lies at the upstream end of the Huddersfield Broad Canal. It is the 

largest of the three sites in terms of heat load and extraction capacity. The building is located 
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adjacent to the Huddersfield Basin between lock 1E of the Huddersfield Narrow Canal and 

lock 9 of the Huddersfield Broad canal see Figures 3.1 and 3.2. 

 

2.2 Canal Side West – Huddersfield Narrow Canal 

Site 2 lies at the rear of the Canal Side West (CSW) building between lock 1E and lock 2E. 

The discharge point into the canal is positioned upstream from lock 1E approximately 60m 

downstream of the road bridge at the west side of the building. The inlet and outlet are 

distinguishable by the galvanised steel cover plates which can be seen in Figures 3.3 and 3.4. 

Outlet 

 

2.3 Site 3: Lockside – Huddersfield Broad Canal  

The Lockside building is immediately downstream of lock 1E of the Huddersfield Narrow 

Canal. Figures 3.5 and 3.6 show the area adjacent to the inlet/outlet, the routing of the pipes 

from within the building to the inlet and discharge point are not known. 

 

 

 

Figure 3.1: Central Services Building 

Inlet and Outlet 
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Figure 3.2: Embankment – CSB 

 

 

Figure 3.3: Canalside West – Outlet 

Outlet 
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Figure 3.4: Canalside West – Inlet 

 

 

Figure 3.5: Lockside Building 

Inlet 
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Figure 3.6: Inlet/Outlet- Lockside 

 

3.1.3 System Description: 

A typical schematic diagram of the chilled water plant for the building cooling system is 

shown in Figure 3.7. Cooling water is extracted directly from the canal, and is pumped around 

a bank of plate heat exchangers and then discharged back into the canal. The heat exchanger 

plates form alternative sections- with canal water in one section and condenser cooling water 

from the chillers in the next. This causes heat transfer from the refrigeration plant condensers 

into the cooler canal water. As the heat exchanger plates form a closed system, the water from 

the two sections is not mixed, the system is therefore classed as a ‘use once put-back system’ 

and no water is lost.  

The principle of the plate heat exchangers used is shown in Figure 3.8 and a typical heat 

exchanger plate used for CSB can be seen Figure 3.9. As the inlet water is not filtered, silt and 

algae can (and does) enter into the cooling system, clogging the heat exchanger cooling 

plates. Periodic back-washing is carried out to clean the panels and ensure the efficient 

operation of the cooling system.  

 

Inlet and Outlet 



 

Figure

Figure 3.8: Exploded

48 

ure 3.7: Cooling system schematic diagram 

 

Exploded view of heat exchanger- ‘Coulson Vol.3, p 549’

 

 

‘Coulson Vol.3, p 549’ 
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Figure 3.9: Heat exchanger plate 

 

3.1.4 Building Management System 

The building management system differs slightly for each cooling system but essentially CSB 

and CSW utilises a data logger to record the inlet and outlet water temperature and water flow 

rate every 15minutes. This is stored in the system’s memory over a 10 day period  

 

3.1.5 Site Details 

5.1 Site Details - Central Services Building System 

The inlet and outlet are positioned adjacent to each other beneath the foot bridge; both pipes 

are fitted with 90 degree elbows to extend the pipes downstream inline with the canal and 

adjacent to the embankment. The canal water is extracted via a 150mm diameter submerged 
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pipe, shown in Figure 3.10. A coarse mesh basket forms a screen over the inlet pipe to prevent 

fish being drawn into the inlet and prevent the ingress of coarse deleterious material. 

 

 

Figure 3.10 inlet screen - CSB 

 

Over a period of time the 150mm outlet pipe has been damaged and fractured, reducing the 

length and placing the position of the discharge point upstream of the inlet. The discharge end 

of the pipe is now semi-submerged, resulting in the plume discharging across the surface of 

the canal. The concrete wall of the wharf forms the embankment. Timber posts are positioned 

to provide protection of the pipes from river traffic as shown in Figures 3.11a and 3.11b. The 

figures also indicate the extent of vegetation adjacent to the embankment in the area of the 

inlet and outlet discharge plume. The pump house and plant room are located within the 

adjacent buildings. The water inlet temperature is measured before the pipe junction for the 

three pumps and pressure gauges are installed in the delivery side of each pump in the pump 

room. The outlet temperature is measured in the plant room on the outlet side of the plate heat 

exchangers. The coordinate positions of the intake and outlet discharge were measured 

relative to the fixed datum at the base of the footbridge, the positions of the timber posts were 

also taken relative to the same datum which may allow for modelling of the heat diffusion. 

Timber post 
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Figure: 3.11a- CSB Discharge outlet 

      

 

Figure 3.11b: CSB Discharge outlet 
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5.2 Site Details - Canalside West (Huddersfield Narrow Canal) 

The inlet is positioned 40m upstream of the outlet discharge and both the inlet and outlet are 

directed across the canal perpendicular to the normal line of flow of the canal. Figure 3.12 

shows the normal view seen of the CSW outlet.  

 

Figure 3.12: Normal View of CSW Outlet 

 

Figure 3.13: CSW outlet-during dewatering of canal 
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A coarse inlet and outlet screen is fitted to the buttresses shown in Figure 3.13. It is 

photographed following vandalism that caused partial dewatering of the canal. Following 

dewatering, it has been determined that the ends of the pipes are encased in a concrete 

buttresses and may stop some 300mm inside the buttress. 

 

5.3 Site Details: Lockside (Huddersfield Broad Canal)  

Due to building planning restrictions the configuration of the inlet and outlet differs from both 

sites 1 and 2. Both the inlet and outlet are oriented across the canal perpendicular to the flow 

of the canal as in site 2. However the inlet is positioned at the same elevation as the outlet but 

only 300mm on the upstream side of the outlet discharge at the same chainage below lock 1E.  

Timber posts are used to provide protection against river traffic, (Figure 3.14), and a fine 

mesh cloth screen is positioned to keep away debris from around both the inlet and outlet.  

 

 

 

Figure 3.14: Protective posts and mesh screen – Lockside 

 

 



54 
 

3.1.6 Canal 

Usage 

The canal forms part of the network which is used for growing narrow boating/leisure 

activities. Apart from peak holiday periods the canal appears generally to be little-used. 

 

Flow 

Little water flow has been experienced through these sections of the canal systems. Generally 

no flow is available over the weir at lock 1E, the water level being well below the weir level, 

any water flow is mainly due to lockages or vandalism.  

No flow was evident other than that created by lock gate leakage and surface disturbance due 

to wind velocity (where the prevailing direction appears to be from the downstream direction, 

against the normal flow expected due to lockages). 

 

Plume 

Figure 3.15 show a very distinct velocity plume created by the semi-submerged discharge 

pipe causing turbulent flow and surface disruption. Whilst the surface velocity of the plume 

indicates a much larger area of surface disturbance, the edges of the plume are ill-defined and 

an acceptable temperature balance appears to be achieved before the full extent of the plume 

area is reached. 

For this reason a surface area for the discharge plume of 5m long x 2m wide was selected to 

form the boundaries for the grid measurement. 

 

3.1.7 Initial thermal images 

Images were taken of the discharge at each of the three sites using a thermal image camera. 

This indicated the mixing area and temperature gradient within the discharge plume. 

Figure 3.15 shows the comparison of the discharge plume at the Central Services Building 

(CSB) taken with a digital camera and the thermal image camera. The outlet pipe is semi-

submerged and the mixing plume can be clearly seen on the canal surface. The figure shows 

the extent of the plume and the differing temperatures of the protective timber posts around 

the discharge pipe. The thermography studies are described in detail in Chapter 5. 
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Figure 3.15: Thermal and digital image of Discharge plume 

 

3.1.8 Measurements Procedure 

The procedure for data collection was discussed and agreed with BW prior to the tests being 

undertaken using the sheets enclosed in Appendix 2. 

Measurements were made along the embankment at a distance from the end of the outlet pipe 

to define the position of the discharge outlet and the relative positions of the grid. A timber 

lath was marked at appropriate lengths to give the distances from the centreline of the 

discharge pipe. This produced a two dimensional matrix along the length of the plume which 

could be readily reproduced- using the discharge pipe outlet position as the datum, which in 

turn was related back to the wharf/footbridge. A length of steel tubing was secured to the lath 

to which the thermocouple probe could be attached. This also acted as the depth measurement 

gauge by attaching a suitable measuring tape to produce a profile of the canal bed at the grid 

points. 

Prior to temperature measurement, as agreed with BW in principle, the lock gate (1E ) leakage 

rate was assessed from the areas of greatest discharge (i.e. from the centre and sides of the 

gates), by recording the time taken to fill a container of known volume. Photographs of the 

gate leakage and canal water level at the fixed weir were taken at the start and end of the trial. 

Any flow over the bypass channel and fixed weir was measured. If no flow was observed, the 

height from the weir crest to the water level was recorded. An anemometer was used to record 

the wind speed and its direction, i.e. upstream or downstream. 

Thermal images were taken at the start and end of the trial along with a number of digital 

photographs. 
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3.1.9 Temperature Measurement 

Canal ambient water temperatures were recorded 15m upstream and downstream of the outlet 

discharge point. Ambient canal water and air temperatures were recorded with the use of ‘k’ 

type thermocouples and digital meter at the start and end of the trial. 

The canal water temperature was then measured and recorded at the grid points at the depths 

agreed with BW, i.e. 50mm below the surface, at mid depth and 50mm above the bed. The 

details of equipment used for temperature measuring are contained in the Appendix 3. 

 

CSB – Temperature 

Initial temperature measurements were taken on particularly hot bright sunny days (+24oC 

ambient). When analysing the temperature matrix, it appears that the water temperature 

adjacent to the concrete wharf was being raised due to solar heat gain from the wharf. This 

caused anomalies in the results. 

Appendix 3 contains the temperatures obtained at the grid points at various depths, i.e.50mm 

below the surface, mid-depth and above the bed. Due to debris and aquatic growth it was not 

always possible to take the readings at 50mm above the canal bed. The tables (measured 

temperatures) indicate the temperature on the embankment side appears slightly higher than 

those in a similar position on the opposing side of the plume. This may be attributable to a 

heat gain from the embankment and the effect of the embankment, timber posts and plant 

growth disrupting free flow and thereby restricting dispersal of the plume. 

The measurements taken at the surface layer indicate the maximum core temperature of the 

plume is contained within an area 400mm wide by 1m long equally displaced about the 

centreline of the discharge pipe. This core is not evident at the mid-depth indicating the 

turbulent flow possibly occurs close to the diameter of the discharge pipe. There is a less 

disruptive temperature distribution than the embankment side because the temperature 

distribution on the plume from the centreline of discharge in towards the centre of the canal is 

undisturbed and not effected by the aquatic growth, debris and timber posts (in contrast to the 

embankment side).  

Figure 3.16 shows the temperature distribution at the various depths from the discharge pipe 

along the centre line of the plume. It can be seen that the temperature drops from 24oC at the 

discharge point to 19°C within a distance of 2m. Within a distance of 4m from the discharge 

point the surface, mid and bed temperatures have attained a common value at 18oC.  



57 
 

 

 

Figure 3.16: CSB-Temperature distribution along centre line of discharge 

 

The chart, Figure 3.16 indicates a maximum plume discharge temperature 50mm below the 

surface at 24°C obtained using the thermocouple. The thermocouple temperatures were 

recorded at 4:00pm. The temperature reduced with increasing distance downstream. In the 

mid and bed layers the temperature started with a smaller value as the plume did not reach 

those areas until a certain distance from the outfall. And then the temperature dropped again 

to a value closer to the ambient temperature of canal water. The fluctuating in temperature 

was due the turbulence. 

 

Canalside West – Temperature 

The prevailing wind direction is from the downstream direction but the potential for 

recirculation from the outlet back into the inlet is not considered as a potential problem due to 

the relative upstream distance of the inlet from the discharge point. 

No civil drawings were available for the discharge at CWS, but it was observed that the 

discharge pipe is fully submerged and is thought to terminate within a recessed concrete 

buttress covered with a mesh grill and cover plate. The pipe terminates approximately 300mm 

17.0

18.0

19.0

20.0

21.0

22.0

23.0

24.0

25.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
 °

C

Distance along plume x(m)

Temperature along the centreline of plume at three layers (CSB)

Surface

Mid-depth

Bed



58 
 

from the edge of the embankment. The design of the discharge culvert, mesh screen and 

submerged discharge allows dispersal of the discharge plume before it emerges onto the canal 

surface. The area of the plume on the surface is not distinctly visible as at CSB, but can be 

seen from the thermal camera image. This indicates the warm water discharge spread over the 

surface area, therefore an area of plume of 2.5m long x 2.0m wide was selected for the grid 

size for data measurement. Appendix 3 contains the temperature measured at three layers; 

surface, mid depth and the bed.  

Due to the reduced heat load at CSW, the discharge area is much smaller than CSB; Figure 

3.17 shows the temperature distribution along the centreline of discharge projecting 2.5m 

across the canal with a maximum temperature variation of only 1.0 °C throughout its depth. 

Sub-surface circulation appears to be taking place as the temperature mid-depth is higher than 

at the surface. Observation of the temperature distribution shown in Figure 3.17 indicates an 

even transition of temperature; however the surface temperature on the upstream side is 

slightly higher than downstream, this may be due to the prevailing wind in the upstream 

direction causing free convection through the depth of the canal. No evidence of aquatic 

growth was seen at CSW (unlike CSB). The maximum temperature range throughout the 

boundaries of the measured volume is in the order of 18.9 to 17.5 °C. 

 

Figure 3.17: Temperature distributions along centreline of discharge 
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 Lockside – Temperature 

The discharge is directed through the timber posts and the mesh screen. The inlet is at the 

same elevation as the outlet and is only 300mm upstream of the discharge. Dependant upon 

flow rate, this installation has the greatest propensity to suffer from problems of recirculation 

of warm water discharge back into the inlet. This leads to a build-up of temperature. 

As shown in Figure 3.18 the area of the discharge plume, shown as surface turbulence, is 

indistinct- being some 1m long x 1m wide -therefore with the aid of the thermal image camera 

the surface area for the study was assessed as 0.75m long x 1.0m wide. 

As stated above, the intake and discharge are both fully submerged and are located alongside 

each other, protected by timber posts and mesh screen. This causes a disruption of the free 

flow of discharge which results in no clearly evident discharge plume. The thermocouple 

measured temperatures are shown in Appendix 3. 

Figure 3.19 indicates a near constant temperature at mid-depth and at the canal bed, however 

the temperature peaks to 22.5°C at 0.5m from the point of discharge. This correlates with the 

surface thermal image. This is the point where the thermal plume reaches the surface as 

indicated in the thermal images. 

 

Figure 3.18: Lockside discharge 
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Figure 3.19: Plume temperature - Lockside 

 

The ambient temperature was measured at 17.1˚C up and downstream. The temperature at the 

bed is a near constant 18.5˚C as shown in Appendix 3. Some recirculation may be taking 

place as a clear discharge flow cannot take place due to the mesh screen. A further 

measurement trial following the removal of the mesh screen and replacing it with a steel mesh 

screen may give an indication of possible recirculation.  

 

3.1.10 Flow Measurement 

To determine the velocity of flow through the discharge plume an investigation was made of 

the various types of flow meter available. Because the flow measurement required is in an 

open channel (rather than within a fixed installation in a pipeline), an in-line industrial type 

turbine flow meter is unsuitable. The velocity of the discharge flow was measured at the grid 

points using an impeller-type flow meter. Whilst no flow was observed, for reference, 

photographs were taken of the Goytre at CSB which joins the canal at the wharf just 

downstream at the opposing embankment of the CSB intake/discharge point. A similar 
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procedure was then undertaken to record the data for the Canal Side West and Lockside 

buildings. The equipment used for velocity measuring is detailed in Appendix 3.  

 

 

Figure 3.20: Velocity along centreline of plume measured 50mm below the surface – CSB 

 

The velocity was measured at grid points at the surface of the CSB-site. Due to weeds and 

debris along the embankment it was difficult to measure the velocity at all the grids. The 

collected data is presented in Appendix 3. The maximum velocity measured at the discharge 

point is 1.23m/s. Figure 3.20 demonstrates the velocity along the centreline of the plume 

within a distance of 4m from the outfall. 

 

The maximum flow for the Canalside West recorded at the outfall was 0.913m/s, degrading to 

0.49m/s at the surface within 1m from the embankment. With the canal width of 10m, no 

problems were anticipated with temperature stratification causing distress to aquatic life. The 

measured velocities are presented in Appendix 3. Figure 3.21 shows the measured velocity 

along the centreline of plume at the surface of canal, therefore the maximum velocity appears 

is 0.49m/s. Whilst the discharge velocity 0.913m/s is not shown in the graph because the pipe 

located below the surface. 
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Figure 3.21: Velocity along the centreline of plume measured 50mm below the surface– 

Canalside West 

 

For the Lockside, a maximum velocity of 1.217m/s was recorded at the point of discharge, 

degrading to 0.31m/s at a distance of 2m from the discharge point at the canal surface. The 

measured velocities are presented in the Appendix 3 and the centreline measured velocity at 

the surface is described in Figure 3.22 with a maximum velocity 0.62m/s. Note that the 

discharge velocity 1.217m/s is not appeared because the Figure 3.22 shows the velocity 

profile on the surface of canal whilst the discharge pipe is located below the surface. 

 

3.1.11 Depth Measurements 

The graduated pole used to carry the measurement tools was used to measure the depth of 

canal at each grid point. The depths for all the sites are tabulated in Appendix 3. 
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Figure 3.22: Velocity along the centreline of plume measured 50mm below the surface – 

Lockside  

 

3.2 Refine Case Study 

3.2. 1 Introduction 

To better refine the results due consideration was given to more practical investigations in 

order to obtain enhanced field trial data within different layers and along the plume core 

region. The survey carried out across all three sites at University of Huddersfield determined 

the plume size, velocity and temperature distribution across the plume and any evidence of 

recirculation. Additionally, investigation on additional British Waterways canal sites was 

carried out- BBC Mailbox on Birmingham canal, Kirklees College on Huddersfield canal and 

Enviroenergy on Nottingham canal. The sites are varied in the design of their discharge pipe 

structure. The CSB site (as mentioned in chapter one) is surface discharge and the other three 

sites are submerged discharge. The Central Services Building at the University of 

Huddersfield was selected as the primary site for refined investigations because the thermal 

plume of the flow occurs on the surface and is clearly defined. Canalside West, Lockside, 

BBC Mailbox, Kirklees College and Enviroenergy Nottingham were selected as submerged 

discharges for refined case study- the discharge pipes at these sites are submerged and located 
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a certain distance below the free surface of canal. The sites have licences from British 

Waterways to use the canal water as part of the building cooling system. As such the 

University and other sites are allowed to extract cold water from the canal and discharge 

warm water into it.  

As discussed, by law the maximum temperature of canal ambient should not exceed 28˚C, the 

reason being that the water begins to de-oxygenate and so the health of aquatic life is put at 

risk. As a result of such regulations, the University of Huddersfield, BBC Mailbox, Kirklees 

College and Enviroenergy must maintain a complete record of extraction volumes, inlet 

temperatures, discharge temperatures and surrounding environmental parameters. 

 

3.2.2 Central Services Building CSB - Surface Discharge 

The inlet pipe from the canal is split into three inside the pump house as shown in Figure 

3.23. This allows the pumps to be switched automatically dependent upon demand from the 

air handling system. The inlet temperature is measured in the pump room on the single inlet 

pipe immediately before the branch for the pumps. Analogue pressure gauges are fitted in the 

discharge pipe for each pump (immediately after each pump). 

The outlet water temperature is measured within the plant room on the outlet side of the plate 

heat exchangers. This is some considerable distance from the discharge point into the canal. 

The outlet pipe is lagged and travels within the plant room and adjacent building before going 

underground and connecting to the actual discharge pipe beneath the canal footbridge. A 

digital laser temperature reading was taken on the outlet gate valve in the pump room. 

However, due to the unknown temperature drop through both underground section and the 

submerged discharge pipe, these readings were disregarded. Furthermore, a pressure drop 

occurs through the plate heat exchangers (Figure 3.9), due to the unknown length of pipe and 

number of bends and elbows in the pipe before final discharge back into the canal. It is 

therefore considered that no pressure gauge readings can be used with a sufficient degree of 

accuracy. 

The volumetric flow is recorded on a mechanical flow meter in the plant room. This provides 

the data readout for the water consumption figures supplied to BW. This reading was 

recorded over a known time period to determine the volumetric flow rate. 
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Figure 3.23: Inlet pumps – CSB pump house 

 

Due to the fracturing of the discharge outlet pipe, the intake screen is now offset from the 

discharge outlet pipe and is semi-submerged. It is now positioned approximately 4.5m 

downstream from the outlet pipe discharge point, giving the appearance that the discharge 

plume may re-circulate the heated water into the intake. This may potentially lead to an 

unacceptable temperature build-up as is predicted by the ISIS software. However, the use of 

data logging equipment in the pump room and plant house indicates this is not happening and 

that the system does actually meet the specified requirements. 

The embankment side of the discharge plume is affected by the following:- 

Wooden stakes positioned to prevent damage to the pipe from narrow boats etc. 

Debris and weeds proliferating close to the bank and at the intake screen, 

Rubbish dumped into the canal which tends to collect within the weed growth, see Figure 

3.24.  

The flow in the plume is turbulent, (see Figure 3.25), which results in eddy currents and 

evidence of distortion of flow was apparent around the wooden stakes. This can be seen 

visually on the water surface and in the distortion of the temperature profile within the plume 

area. During the period of trials no flow was evident over weirs at lock 1E. Therefore theories 

Flow 
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of flow in open channels were not considered to be relevant because the canal water is static, 

and the problem then resolves into surface discharge of warm water into a still body of water. 

 

Figure 3.24: Discharge plume –CSB 

 

Figure 3.25: Turbulent discharge – CSB 
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Data Collections: 

To monitor the whole site, it was necessary to establish a reference grid over which the results 

of water flow and temperatures would be measured across, along and below the surface of the 

canal. The centreline of the outlet pipe and the end position of the pipe served as the zero 

position. A graduated pole was laid along the banking to give the linear reference points and a 

second pole was fixed at 90° to the banking to give the transverse reference positions. A third 

vertical pole was secured to the main pole to which the thermocouple probe and flow meter 

could be attached. This third pole was also graduated to indicate depth. The arrangement is 

shown in Figure 3.26a, and Figure 3.26b illustrates the grid points at the surface. 

 Ambient canal water temperatures were recorded 15m upstream and downstream of the outlet 

discharge point. Both the ambient canal water and air temperatures were recorded with the use 

of ‘k’-type thermocouples at the start and end of the trial. The canal water temperature was 

then measured and recorded at grid points at various depths: the discharge layer, at mid depth 

and 50mm above the bed. 

 

 

Figure 3.26a: Graduated pole carry flow meter and thermocouples 
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Figure 3.26b: Grids at CSB site 

 

Figure 3.27 shows the measured temperatures along the centreline of plume. In the refined 

case study, temperature was measured by connecting thermocouples to an amplifier which 

received voltages from the thermocouples which were then sent to a computer through a data 

acquisition device (Labjack U12). 

The techniques used to measure the velocity are similar to the techniques used in the 

preliminary case study. The velocity was measured at the discharge layer, not on the surface 

layer as in the preliminary case study. Figure 3.28 shows the measured velocity along the 

centreline of plume. 

The depth of the canal at grid points was measured using the same procedure of 

measurements followed in the preliminary study. Figure 3.29 illustrates the depth of the canal 

at the mixing zone. 
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Figure 3.27: Measured temperature along the centreline of plume – CSB 

 

 

 

Figure 3.28: Measured velocity along the centreline of plume - CSB 
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Figure 3.29: Canal depth at the mixing zone relation to canal surface– CSB 

 

In the refine case study the data measurements were focused mainly on the core of plumes, 

i.e. the temperature and velocity along the centreline of plume. All the measured data is 

tabulated in the refine case study in Appendix 4. Thermal images are taken at the surface of 

plume and mixing zone, see Figure 3.30. 

 

3.2.3 BBC Mailbox site 

BBC Mail Box building lies at the upstream of the Birmingham Canal and is one of the 

largest British Waterways sites in terms of heat load (i.e. cooling water discharge into the 

canal) and extraction capacity. The discharge point into the canal is positioned approximately 

100m downstream of the intake pipe, and is directed across the canal perpendicular to the 

normal line of flow of the canal (transversal discharge) via a 350mm diameter submerged 

pipe 400mm below the canal surface. Therefore the thermal discharge in this site is an 

example of submerged discharge into shallow and still receiving water. No evidence of 

aquatic growth was seen, see Figure 3.31. 
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Figure 3.30: Thermal plume-CSB site 

 

 

Figure 3.31: BBC Mail Box cooling water discharge to Birmingham Canal 
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The building management system utilises a data logger to record the discharge water 

temperature and water flow rate every six minutes which is stored in memory over a period of 

time. 

The pump house and plant room are located within the building; the outlet temperature is 

measured in the plant room on the outlet side of the heat exchangers. The outlet pipe is lagged 

and travels within the plant room before going underground and connecting to the actual 

discharge pipe 

As mentioned in chapter 1, the cooling water discharge into any British Waterways canal 

must comply with the requirements of Environment Agency: 

For cyprinid (non-salmonid) waters the temperature downstream of the point of discharge 

should not be raised by more than 3°C on the edge of the mixing zone. 

The temperature downstream of the point of discharge, at the edge of the mixing zone must 

not exceed 10oC during the breeding season for species which require cold water for breeding. 

The maximum temperature must never exceed 28 degrees Celsius for cyprinid waters 

 

Temperature Measurement 

The tests being undertaken using the sheets are enclosed in Appendix 1. To define the 

position of the discharge outlet and the relative positions of the grid, measurements were 

made along the embankment at a distance from the end of the outlet pipe. A pole was marked 

at appropriate lengths to give the distances from the centreline of the discharge pipe. This 

produced a two-dimensional matrix along the length of the plume which could be readily 

reproduced using the discharge pipe outlet position as per the datum. Another pole was 

secured to the main pole at 90˚, to which the thermocouple probe and flow meter could be 

attached. This also acted as a depth-measurement gauge by attaching a suitable measuring 

tape to produce a profile of the canal bed at the grid points. The temperature measurements 

were taken at the end of August, on particularly hot sunny days (+18oC ambient). There was 

one hour rain in the afternoon and the survey paused during the rain and then resumed. 

Thermal images were taken at the start and end of the survey along with a number of digital 

photographs. The canal ambient water temperature was recorded 20m upstream of the outlet 

discharge point plus the air temperature. Both temperatures were recorded with the use of ‘k’ 

type thermocouples and digital meter at the start and end of the trial. The canal water 
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temperature was then measured and recorded at the grid points (see Figure 3.32 and 3.33) at 

various levels: the surface, mid depth and approximately 50mm above the bed.  

 

 

Figure 3.32: Temperature and flow measurements at a grid 2m distance from embankment. 

 

 

Figure 3.33: Plume moves to surface of canal, near embankment close to discharge point 
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Figure 3.34: Measured temperature along the centreline of plume – Mailbox 

 

Figure 3.34 shows the temperature measured along the centreline of plume. The maximum 

temperature recorded at the discharge point is 20˚C 

Since the discharge is spread over the surface area, a mixing zone area of 3m long (along 

plume) x 4m wide (2m upstream and 2m downstream from the discharge point) was selected 

for the grid size and data collections.  

 

Flow 

The velocity of the discharge flow was then measured at the grid points using an impeller 

flow meter. The measured velocities are tabulated in the refine case study in Appendix 4. The 

maximum velocity measured was 0.6m/s at the discharge point. Figure 3.35 shows the 

velocity along the centreline of plume. The mixing zone, as a general rule, must factor in the 

ability of fish to move away from any unfavourable conditions around the outfall and should 

not cross the full width of canal and leave at least one meter from the opposing bank to allow 

free movement of fish. 
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Figure 3.35: Measured velocity along the centreline of plume – Mailbox 

 

The depth of canal was measured at each grid point and presented in a table in refine case 

study Appendix 4. The canal at this site is deeper than the University of Huddersfield sites; 

the discharge pipe is also twice the other three sites’ discharge pipes. Figure 3.36 

demonstrates the depth of canal within the mixing zone. 

 

Thermal images were taken for the BBC Mailbox site, although the discharge pipe is deeply 

submerged. Figure 3.37a shows the mixing zone on the surface of the canal and edge of 

plume. The red colour is the reflection of the opposite buildings as it appears in the digital 

photo for the site see Figure 3.37b. 
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Figure 3.36: Canal depth within the mixing zone 

 

         Figure 3.37a: Thermal image      

Figure 3.37: Thermal and digital image for a deeply submerged discharge
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Figure 3.36: Canal depth within the mixing zone – Mailbox
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3.2.4 Canalside West 

Canalside West uses submerged discharge and the direction of plume is transversal. The 

affected parameters are similar to the Mailbox site as both are the same kind of thermal 

discharge- submerged discharge into shallow and still receiving water. The procedures 

followed to carry out the survey at this site are similar to those followed at the Mailbox site. 

The collected data, temperature and velocity, along the centreline of plume are tabulated in 

the refine case study in Appendix 4. Figure 3.38 shows the measured temperature along the 

path line of plume. The plume path line is the centreline of plume, deflected to the free 

surface of canal due to buoyancy effects. In the CSB site, because the discharge is on the 

surface, the path line and the centreline of plume are same. For the BBC Mailbox site the data 

was collected only along the centreline of plume and not the path line, i.e. along a straight line 

and not the deflected path to the surface. Figure 3.39 shows the measured velocity along the 

path line of plume. The graphs in Figures 3.38 and 3.39 show the temperature along the path 

line of plume but as a function of the straight axis x. It is worthy to mention that the path line 

of the plume below the surface is predicted by an equation developed for this reason; this is 

described in detail in theoretical analysis in Chapter 7.  

 

 

Figure 3.38: Measured temperature along the path line of plume – Canalside West 
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Figure 3.39: Measured velocity along the path line of plume – Canalside West 

 

3.2.5 Lockside 

Thermal discharge at the Lockside is submerged. As with the last two sites, the discharge pipe 

is located below the free surface of canal. The discharge pipe diameter is similar to the 

discharge pipe at the Canalside West and smaller than the Mailbox site. Temperature and 

velocity are measured following the same procedure as the other sites. Thermocouples were 

connected to the data acquisition device and then to a laptop to record the measured data. The 

obtained data is presented in a table in the refine case study in Appendix 4. The path line of 

the plume is predicted then the temperature and velocity along it are measured. The obtained 

data is presented in Figures 3.40 and 3.41. As mentioned earlier, to determine the surface area 

of the plume and mixing zone, a thermal camera is used in field trials at the sites. 

In the refine case study, the temperature was measured by connecting the thermocouples to a 

computer via data acquisition device (Labjack 12) except the Mailbox site where digital meter 

is used.  
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Figure 3.40: Measured temperature along the path line of plume – Lockside 

 

 

Figure 3.41: Measured velocity along the path line of plume – Lockside 
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3.2.6 Kirklees College Site 

This case study was undertaken to determine the possibility of using a British Waterways 

canal water cooling system in a new building based on the Huddersfield Canal site by 

Kirklees College. It was found that the canal is able to absorb the rejected heat of 3470 kW 

within 3-4m distance from the outfall. The amount of heat discharged does not exceed the 

Environment Agency Regulation limit of 28°C, thus, there will be no risk on the aquatic life.  

It is intended to present this case study as an appendix to reduce the size of the report. The 

case study is presented as a report since submitted to the Kirklees College, see Appendix 5. 

The site is not built yet; therefore only the theoretical predicted results have been presented. 

 

3.2.7 Enviroenergy Nottingham 

This case study carried out theoretically only and the experimental work fell outside the 

timeframe of the thesis.  

The parameters used in this report are provided by the British Waterways; however in some 

cases, approximations are required. It is known that the discharge uses multi diffusers; three 

pipes with diameter 15in (0.381m) and a single pipe with diameter 6in (0.152m). The depth of 

canal at the margins is 0.5m and at the centre, 1m. The temperature difference is 5 ˚C and 

therefore it is assumed that the discharge temperature 25 ˚C and the canal ambient 20 ˚C. 

Discharge velocity is not given. The maximum flow rate been measured is 1619 m^3/hr 

(0.45m^3/s). This value represents the total flow rate from the pipes (four discharge pipes). 

The following flow rates are obtained by assuming the discharge is proportional to the pipe 

areas, (i.e. the discharge velocity is the same) flow rate for the large pipes 0.1425m3/s and for 

the small pipe 0.02267m3/s. The discharge velocity will be 1.25m/s for both pipes. 

The path line of plume from the centre of the discharge pipe to the free surface of canal is as 

illustrated in Figure 3.42. The temperature along the path line of plume should be as 

illustrated in Figure 3.43 and the velocity as in the Figure 3.44. 

For the rest of the predicted results such as temperature and velocity across the path line and 

the size of plume see Appendix 6. This presents the preliminary report of Enviroenergy 

cooling water study in Nottingham canal.   

 



 

Figure 3.42

 

Figure 3.43: Temperature along the path line
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3.42: Plume path line – Enviroenergy Nottingham

: Temperature along the path line - Enviroenergy Nottingham

 

 

Enviroenergy Nottingham 

 

Enviroenergy Nottingham 



 

Figure 3.44: Velocity along the path line of plume

 

4. Laboratory Experiment

4.1 Introduction 

This chapter describes the experimental setup, the measurement tools and the used techniques. 

Surface and submerged thermal plume

all trials dyed heated water was 

was used to measure the temperature on the surface as well as thermocouples

connected to a data acquisition device 

water into the tank were used 

installed at the top and the side of the tank 

movie footages were converted 

 

4.2 Objective of Experiments

The objective of the experiments

chapter to obtain a consistent 
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4: Velocity along the path line of plume - Enviroenergy Nottingham

 

Experiment 

the experimental setup, the measurement tools and the used techniques. 

Surface and submerged thermal plumes discharged into shallow and still water

was discharged into the receiving water tank. 

used to measure the temperature on the surface as well as thermocouples

data acquisition device or digital meter. Particles discharged with the heated 

were used to measure the velocity within the plume. Two camcorders were 

installed at the top and the side of the tank to record the plume behaviour at each trial. The 

converted to still images, then analysed.   

Objective of Experiments 

The objective of the experiments was to simulate the canal sites investigated in the case study 

chapter to obtain a consistent set of data in an environmental scale model tank. 

 

Enviroenergy Nottingham 

the experimental setup, the measurement tools and the used techniques. 

discharged into shallow and still water were tested. In 

discharged into the receiving water tank. A thermal camera 

used to measure the temperature on the surface as well as thermocouples, the latter 

. Particles discharged with the heated 

to measure the velocity within the plume. Two camcorders were 

to record the plume behaviour at each trial. The 

to simulate the canal sites investigated in the case study 

set of data in an environmental scale model tank.  Tests were 
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performed under variable conditions such as velocities, temperature, pipe diameter and so on. 

The obtained data from the laboratory experiments with the onsite canal data were used to 

verify the theoretical model results. In addition the laboratory experimental data was used to 

develop a number of equations to predict the behaviour of thermal plume. 

 

 4.3 Thermal Modelling  

The first step to simulate the thermal discharge is to determine the densimetric Froude 

Number. This dimensionless parameter will help to simulate canal in a laboratory scale model 

tank. 

The densimetric Froude Number Fd, can be calculated from the Equation 2.14. 

 

The discharge pipe diameter for the model tank must be known, at a scale to simulate the 

canal and build the tank. The canal parameters are known, and the remaining unknown is the 

discharge velocity (Um) which can be calculated from the Equation 2.16.  

Central Service Building site simulation (CSB): the discharge pipe diameter at CSB (
pD

=0.15m) and flow (
pU =1.23m/s), canal’s width and depth are 10m and 1m respectively.  The 

dimensions reduced by 10 to build the model tank, so the discharge pipe diameter for the 

model will be ( mD =0.015m) and the discharge velocity mU calculates as below: 

  

smU

U

m

m

/39.0

015.0

15.023.1

=

=

 

 

The discharge pipe diameter must be large enough to give a proper type of flow turbulent or 

laminar; the type of flow in any fluid can be determined by Reynolds number (Re). The 

discharge flow is laminar when Re < 3000 and its turbulent when Re > 3000 (Coulson, 2003). 

There is a transition region where Re > 2300 in very smooth, straight and uniform pipe, the 

value is slightly lower; Re > 2000 for pipes with usual degree of roughness of walls (Massey, 

1989). In the case of the CSB site the Reynolds number ( )Re p
 is given by Equation 4.1: 
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The Reynolds number shows that the flow is turbulent at CSB site; also it can be seen by 

visual observation of the canal at CSB site. As the flow is turbulent for the prototype it must 

be turbulent for the model. To find out the flow type for the model denote the Reynolds 

number ratio (r) for model to prototype, Equation 4.2. 
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Because the model tank and canal water have same temperature, therefore they have the same 

kinematic viscosity:  
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Therefore 2
3

rr DRe =  

 

This proves that the turbulence depends on the size of discharge pipe diameter: 
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If the Reynolds number is greater than 3000, it means the discharge flow of the model is 

turbulent. The Reynolds number for the model also can be calculated as follow 
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It is close to above value and shown that flow is turbulent. 

 

Following the same procedure, to simulate BBC Mailbox site, discharge velocity for the 

model will be (Um = 0.19 m/s) and the Reynolds Number (Re = 6650). The discharge velocity 

for the Canalside West model is (Um = 0.29) and (Re = 4227). For the Lockside the discharge 

velocity for the model is (Um = 0.385 m/s) and (Re = 6034). The Reynolds Numbers for all the 

models are greater than 3000, therefore the discharge flow in the model tank is turbulent. 
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4.4 Experimental Setup and Apparatus 

4.4.1 Model Tank 

The laboratory experiments were conducted using a tank, 2m long by 1m wide and 0.3m 

deep. It was constructed of transparent acrylic so as to allow visual observation of the thermal 

plume including photographs and videos of experiments. The tank was a 1/10th scale model 

to represent most anticipated situations that may exist in practice. Figure 4.1a shows the 

photograph of the experimental model tank. A schematic of the experimental setup is shown 

in Figure 4.1b. Note that the tank will be filled with water to the required level based on the 

depth of the simulated site. Discharge pipes were made from easy fit plastic so they could be 

changed easily to fit any desired diameter. The position of discharge and intake was based on 

their location on the simulated site. Intake water returned to a small tank where the 

temperature and flow were measured then extracted to drainage. The receiving water in the 

model tank was still and not moving as no current had been given. The entire experimental 

run was completed once the steady state was achieved and the temperature of plume was 

equal to the receiving water ambient temperature (∆T = 0). The time required to obtain the 

steady state condition depended on the discharge velocity and temperature, with longer times 

for higher discharge velocities and temperature. 

 

Figure 4.1a: Experimental model tank 
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Figure 4.1b:  Schematic diagram of experimental setup 

 

The laboratory experiments were carried out in all seasons except summer when the 

temperature was highest; therefore the laboratory building temperature averaged 18˚C. This 

temperature is equal to the average ambient temperature in summer when the thermal 

discharges are highly affected by the environment.   
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4.4.2 Water Supply 

The discharge water was supplied from a constant head cistern installed next to the model 

tank. The cistern was connected to main hot and cold water pipes with flow control valves to 

maintain the required temperature, see Figure 4.2. The level of heated water is controlled by 

connecting the cistern to a number of pipes at different levels connected to the drainage. This 

kept the supplied water at a certain level which gave a required discharge velocity.  

The heated water discarded into the model tank via discharge pipes. Two different discharge 

pipes were used: fixed and movable. The moveable plastic discharge nozzle was 0.032m 

diameter, used for simulation of canal sites with large discharge pipe diameters, Figure 4.3. 

The outlet of the plume discharge could be located at any side of the tank and at any desired 

depth. The main discharge pipe was fixed and distributed to five outlets at different sides and 

levels. Easy fit plastic pipes were used for the main discharge so the pipe diameter could be 

changed as required, whereas the majority of the tests were carried out with a discharge pipe 

diameter of 0.015m. Flow rate was controlled by two valves; one valve was located 

underneath the cistern, Figure 4.2 and another located just before the outlet next to the tank 

wall, see Figure 4.4. Always one of the valves was fully opened and the other only opened 

fully when a test was performed.  

 

Figure 4.2: Hot and cold water valves controlling cistern temperature 



 

Figure 4.3: Movable discharge pipe

Figure 4.4: 
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Figure 4.3: Movable discharge pipe 

 

Figure 4.4: Discharge pipe flow control valves 
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A flow meter was installed on the discharge pipe to measure discharge velocity, Figure 4.4. A 

by-pass line was installed to allow preliminary adjustment of temperature and flow before 

water was discharged into the tank, Figure 4.5.  

Intake pipes were located at the side of the tank at variable depths and provided with flow 

control valves. The intake pipe was operated only in the simulation of canal sites where the 

intake was influenced by the discharge i.e. when located within the mixing zone. 

 

 

Figure 4.5: By - pass 

4.4.3 Experimental Method 

A set of experimental trials were carried out with different parameters for each trial. The 

parameters for 24 runs are scheduled in the Table 4.1. These parameters were influenced on 

the behaviour of the thermal plume in the receiving water. Densimetric Froude number Fd is 

not the only affected parameter investigated by many researchers in this field. There are other 

parameters which are affected on the diffusion of the thermal plume such as the depth of the 

discharge pipe and the depth of the receiving water. The parameters used in the current study 

were discharge pipe diameter D0, temperature difference between the discharge and the 

receiving water ∆T, discharge velocity U0 and buoyancy �́. These parameters will involved in 
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determination of the densimetric Froude number Fd and the length scale LM. Therefore Fd, LM 

as well as the discharge pipe depth z0 and the receiving water depth H are the main parameters 

effecting the plume behaviour. Also some parameters presented in the Table 4.1are for 

information only and they will not be presented in the mathematical models with the current 

format. The Reynolds number Re show whether the flow is turbulent or laminar, however 

both types of flow were considered as the produced models will be applicable for both 

turbulent and laminar discharge. The values of the parameters for the experimental trials were 

selected based on the values of the sites on the canal. For example the minimum temperature 

difference found on the real canal sites was around 3°C and the maximum was around 8°C. 

Therefore the temperature differences used for the trials were a range between these two 

values (3°C, 4°C, 6°C, 7°C and 8°C). The minimum velocity for the canal site simulated was 

around 0.19m/s and the maximum was around 0.45m/s. The minimum denisimetric Froude 

Number Fd recorded for the canal sites was 13.3 and the maximum value was 54.9. The 

densimetric Froude numbers used in the experimental trials were between these two. 

Similarly the values of the other parameters were selected. The worst scenario for the 

temperature were considered i.e. “∆T = 8 °C” in several trials. To fulfil the experiments and 

to involve all the parameters, five temperatures are used for the discharge, three different 

velocities, two discharge pipe diameters and three different depths for the discharge pipe and 

the receiving water.  

 

4.5 Data Collection Procedure 

4.5.1 Temperature measurements 

The receiving water ambient temperature in the model tank was defined as the initial basin 

temperature. The discharge water temperature was measured in the cistern and at the outfall. 

“k” type thermocouple sensors with high frequencies were used to measure temperatures. The 

diameter of the thermocouples was 0.1mm. Two methods were used to measure the 

temperature: one uses a digital meter to collect data and another using a computer. In method 

one, a rake of five thermocouples was used to measure the temperature within the mixing 

zone. The distance between each sensors depended upon the discharge water properties. Due 

to the low discharge velocities applied and to avoid any flow disturbance, the number of 

probes was limited to five and no more. In addition the probes could affect the direction of 

flow and the velocity. Thermocouples were connected to multi channels digital meter to read 
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the temperature for each sensor, Figure 4.6. The other method used to measure temperature is 

to use a single probe connected to a computer. The thermocouple in this method connected to 

an amplifier to increase the low receiving voltage is then connected to a data acquisition 

device (Labjack 12) and then to a computer. A program is installed on the computer to read 

the mean temperature of the thermocouple.  Figures 4.7a, 4.7b show the photograph and 

schematic of the data acquisition setup. 

 

 

Figure 4.6: Thermocouples digital meter 

 

A thermal camera was used to measure the temperature on the surface of the mixing zone and 

to verify the thermocouples data. This will be discussed in detail in Chapter 5. 

Five different temperatures for the discharge were used in the laboratory experiments; the 

temperature difference between the discharge and model tank ambient water were as follows; 

∆T = 3˚C, ∆T = 4˚C, ∆T = 6˚C, ∆T = 7˚C and ∆T = 8˚C. 

 



93 
 

 

Figure 4.7a: Photograph of data acquisition setup 

              

 

Figure 4.7b: Schematic of data acquisition setup 

Data acquisition device 

Carriage 

Labjack-12 

Thermocouple “k” 

Model Tank 

 

Amplifier 

 

PC 
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D. 

diameter 
        Buoyancy   

Buoyancy. 

flux 

Momentum. 

Flux 

Length 

scale 
    

 
    

Run D₀ (cm) z₀ (cm) H (cm) ∆T (˚C) 
U₀ 

(cm/s) 
g' (cm/s²) Q (cm³/s) 

B₀ 

(kgm²/s²) 
M₀ (m⁴/s²) Lм (cm) z₀ / Fd 

(H - z₀)/ 

Lм 

D0 Fd / 

(Fd  – z0) 
Re Fd 

1 1.2 14.5 21.5 3 19 0.56 21.48 12.02 408.07 26.18 0.62554 0.26734 3.9737 2269.29 23.18 

2 1.2 14.5 21.5 4 19 0.77 21.48 16.45 408.07 22.38 0.73232 0.31273 3.3943 2324.44 19.80 

3 1.2 14.5 21.5 6 19 1.22 21.48 26.16 408.07 17.75 0.92239 0.39430 2.6949 2437.91 15.72 

4 1.2 14.5 21.5 7 19 1.45 21.48 31.22 408.07 16.25 1.00764 0.43077 2.4669 2496.19 14.39 

5 1.2 14.5 21.5 8 19 1.70 21.48 36.49 408.07 15.03 1.09023 0.46574 2.2800 2551.58 13.30 

6 1.2 13.5 21.5 3 34 0.56 38.43 21.52 1306.74 46.86 0.32538 0.17072 6.2235 4060.84 41.49 

7 1.2 14.5 21.5 4 34 0.77 38.43 29.44 1306.74 40.06 0.40891 0.17476 6.0789 4159.52 35.46 

8 1.2 14.5 21.5 6 34 1.22 38.43 46.81 1306.74 31.77 0.51546 0.22035 4.8223 4362.58 28.13 

9 1.2 14.5 21.5 7 34 1.45 38.43 55.86 1306.74 29.08 0.56311 0.24073 4.4143 4466.86 25.75 

10 1.2 13.5 21.5 8 34 1.70 38.43 65.30 1306.74 26.90 0.56723 0.29739 3.5700 4565.98 23.80 

11 1.2 14.5 21.5 3 45 0.56 50.87 28.48 2289.06 62.02 0.26412 0.11287 9.4114 5374.64 54.90 

12 1.2 14.5 21.5 4 45 0.77 50.87 38.97 2289.06 53.01 0.30890 0.13204 8.0469 5505.24 46.94 

13 1.2 14.5 21.5 6 45 1.22 50.87 61.95 2289.06 42.05 0.38947 0.16648 6.3823 5774.01 37.23 

14 1.2 14.5 21.5 7 45 1.45 50.87 73.94 2289.06 38.49 0.42547 0.18188 5.8423 5912.02 34.08 

15 1.2 14.5 21.5 8 45 1.70 50.87 86.43 2289.06 35.60 0.46032 0.19664 5.4000 6043.21 31.50 

16 0.8 14.5 21.5 8 19 1.70 9.55 16.22 181.37 12.27 0.87879 0.57041 1.8857 1701.54 16.50 

17 0.8 14.5 21.5 8 34 1.70 17.08 29.02 580.77 21.96 0.50000 0.31876 3.3143 3043.91 29.00 

18 0.8 15.5 21.5 8 45 1.70 22.61 38.41 1017.36 29.06 0.40260 0.20646 5.1333 4028.81 38.50 

19 1.2 7.7 14.7 8 19 1.70 21.48 36.51 408.07 15.03 0.57895 0.465866 2.2800 2551.58 13.30 

20 1.2 7.7 16.7 8 45 1.70 50.87 86.48 2289.06 35.59 0.24444 0.25288 4.2000 6043.21 31.50 

21 1.2 11 18 8 19 1.70 21.48 36.51 408.07 15.03 0.82707 0.465866 2.2800 2551.58 13.30 

22 1.2 11 18 8 45 1.70 50.87 86.48 2289.06 35.59 0.34921 0.196699 5.4000 6043.21 31.50 

23 0.8 11.5 18 8 19 1.70 9.55 16.23 181.37 12.27 0.69697 0.52974 2.0308 1701.54 16.50 

24 0.8 7.7 14.7 8 45 1.70 22.61 38.43 1017.36 29.06 0.20000 0.240906 4.4000 4028.81 38.50 

 
Table 4.1: Experimental trials parameters 
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4.5.2 Velocity measurements 

As mentioned in the opening chapters, the current research investigates thermal plumes which 

have low initial velocity. The maximum discharge velocity studied is 1.23m/s at the CSB 

canal site and the laboratory simulation in the model tank is 0.4m/s. Another two discharge 

velocities are used in the laboratory experiments and those are; 0.19m/s and 0.34m/s. All 

three velocities used in the experiments are relatively small and easily disturbed. Therefore 

any measuring instrumentation which may disturb the flow of the plume was avoided, 

particularly those which required insertion of an object into plume and the mixing zone. 

Traditional instrumentation such as flow meters, pitot- tubes and films influenced the velocity 

of the plume, its direction and even the temperature gradients. For the same reasons a thermal 

camera and a maximum of five thermocouples probes were used to measure the temperature.  

Flow visualisation technique has been used to measure the velocity of the thermal plume 

within the model tank. The technique filmed the flow without affecting the behaviour of the 

thermal plume. Two camcorders were installed on the top and the side of the tank to record 

the plume flow in the receiving water, Figures 4.8a and 4.8b illustrate the camcorders’ 

schematic setup.  

 

Figure 4.8a: Top camcorders 
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Figure 4.8b: Side camcorder 

Figure 4.8: Photograph of the schematic camcorders setup 

 

Small particles are inserted into the heated water then discharged into the tank. The 

camcorders were set up to start recording at the same time, one recording the plan view and 

the other the side view.  

While the camcorders recorded the flow of plume, the motions of particles within the plume 

are captured. The speed of each camcorder is 27fps (frame per second), with 0.037s required 

to capture a frame. Adobe Premiere Pro 1.5 software was used to convert the movies to still 

images (frames). The distance that a particle moves within a frame dividing by 0.037sec gives 

a velocity at that point. 

 

4.5.3 Thermal Images 

In the laboratory experiment, thermal images (Figure 4.9a) give very clear heat diffusion 

profiles and show the plume on the surface of model tank (Figure 4.9b). The main advantage 

of the thermal camera’s application in thermal plume study is its high accuracy without 
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disturbing the flow. The thermal image of temperature distribution is investigated in detail in 

Chapter 5.  

 

       

        a. Thermal image of the model tank                                      b. Model tank 

Figure 4.9: Thermal and digital image of model tank 

 

4.5.4 Dyed water discharge 

As mentioned above, the thermal camera is able to measure the temperature distribution on 

the surface of the mixing zone. Coloured water was discharged into the tank to demonstrate 

the behaviour of the thermal plume below the free surface and the vertical diffusion of the 

plume. Figure 4.10 shows a plan view of a submerged dyed plume discharged into the model 

tank. Figure 4.11 shows a side view of the submerged discharge into the model tank. It can be 

seen that the heated water in submerged discharge deflects to the surface as the hot water has 

less density than the ambient cold water. The effects of the density and the depth of the 

discharge pipe are the main parameters moving the plume to surface, and therefore the 

vertical diffusion towards the bed is very small. 

Figure 4.12 illustrates the discharge of dyed heated water to the surface of the model tank. It 

is shown how the thermal plume remains on the surface and there is little diffusion towards 

the bed. 

In addition to prediction of the mixing zone, the path line of the thermal plume below the 

surface is determined from the dyed plume. 
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Figure 4.10: Submerged dyed plume discharge into model tank – plan view 

 

 

Figure 4.11: Submerged dyed plume discharge into model tank – side view 
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Figure 4.12: Dyed water discharged into surface of model tank – side view 

 

4.5.5 Size Measurements  

The size of the thermal plume in the receiving water is one of the problems that canal cooling 

water users may face. The Environment Agency regulations state that the plume size must not 

be too big so as to block the path of aquatics. The side views of the thermal plumes prove that 

the layers of the receiving water below the discharge centreline are not affected much by 

heated water, and as a result there will be a path for fish to pass.  

The size of the thermal plume can be measured from dyed plumes. The size of plume is 

determined from the plan and side view of thermal discharge. The recorded images of the 

dyed plume are read by a computer programme- MATLAB -then scaled. Figure 4.13 shows 

the plan view of the thermal plume with dimensions, and then the width and the length of the 

plume can be measured. Figure 4.14 illustrates the side view of the thermal plume read and 

scaled by MATLAB. The vertical dimensions of the plume can be measured from this figure. 

The results of these measurements give the length, width and depth of the thermal plume from 

which the size of plume is calculated. 
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Figure 4.13: Plan view of the plume with dimensions  

 

 

Figure 4.14: Side view of the plume with dimensions 
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5. Thermograph 

5.1 Introduction 

One of the measurement methods used in this research was a thermograph technique using the 

Thermal Camera. Thermal cameras (Figure 5.1) show the diffusion of heat on the surface of a 

hot body. Human eyes are able to detect visible light but can see only a very small part of the 

electromagnetic spectrum. Infrared radiation from heat or thermal radiation (such as sunlight, 

fire, radiators etc.) lies between the visible and microwave range of the electromagnetic 

spectrum and it cannot be seen by our eyes. Thermal camera infrared thermography 

transforms an infrared image coming from a hot body into a radiometric coloured image 

which is representative of the thermal gradients across the body (Thermal Camera User 

Manual). The image may be observed on an LCD monitor and stored for future analysis and 

interrogation. The camera must be set to the right emissivity of the test material; emissivity is 

the capacity of a surface to emit heat at a given temperature. It is a relative quantity, and its 

value varies from (0 to 1) for water it is 0.96. To avoid unnecessary and unwanted reflections 

it is necessary to ensure the thermal camera is placed in a position relative to the test body 

without the effects of reflection - which is the most problematic issue facing the 

thermographer - especially with thermal water studies. 

 

Figure 5.1: Thermal Camera connected to a PC 
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In this chapter a thermograph technique is described to measure the temperature distribution 

of the thermal plume discharge into receiving water. The thermal images provided for the 

surface of receiving water show clearly the mixing zone, shape of plume and edges of the 

plume. The process applied on both types of discharge studied submerged and surface 

discharge and observed the thermal discharge. In addition this was applied to the laboratory 

experimental model tank. In order to verify the accuracy of the thermocouples data, the 

centreline temperature decay was obtained from the thermal images and compared to 

temperature measured by the thermocouples. What is not evident from the thermal images is 

the three dimensional effect of the plume and how the temperature dissipates through the 

depth of the canal. 

 

5.2 Surface Discharge Thermal Images 

To indicate the mixing zone and temperature gradient within the discharge plume, images 

were taken of the discharge at the Central Services Building (CSB) site using a thermal 

camera. Figures: 5.2, 5.3 and 5.4 show the comparison of the discharge plume at the CSB site 

taken with the thermal image camera and a digital camera  

 

 

Figure 5.2a: Thermal image of Discharge plume 

Mixing zone 
Plume 
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Figure 5.2b: Discharge plume 

 

 

 

Figure 5.3: Thermal and digital image of plume from downstream 

 

The outlet pipe is semi-submerged and the mixing plume can be seen clearly on the canal 

surface. Figure 5.2a shows the extent of the plume and the differing temperatures of the 

timber protective posts around the discharge pipe. The temperature at the outfall was around 

22oC, and this dissipated quickly to around 20oC. It also showed the area required for the 

Discharge 

Plume 

Mixing zone 

Plume 

Discharge 

Thermocouple 

Plume 
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plume to dissipate the remaining heat and attain the canal ambient temperature of 17oC. 

Figure 5.3a illustrates the images from downstream and the higher temperature of the upper 

section of the discharge pipe which projects above the canal surface. The variation of colour 

on the timber posts especially on the top of the posts is due to reflection.  

Figure 5.4 shows the thermal image for CSB in different colours and the temperature at the 

discharge point is 20˚C. The digital photographs illustrate the aquatic plant and weed growth 

adjacent to the embankment at the discharge pipe and intake screen. The thermal images 

illustrate the abrupt disruption of temperature dispersal of the plume in the same area. The 

figures also illustrate turbulent dispersal along the plume and the area of the plume 

temperature distribution. The temperature at any point within the plume and mixing zone can 

be measured from the thermal images. 

  
Thermal image of plume Digital image showing plume 

Figure 5.4: Typical photographic image of a discharge pipe and its corresponding thermal image. 

 

5.3 Submerged Discharge Thermal Images  

Thermal images were taken for other British Waterways canal sites in which the discharge 

pipe is deeply submerged. The thermal camera is not able to measure the temperature of the 

plume below the surface. It takes recordings once the plume reaches the surface. The Mailbox 

site is a submerged discharge site and the Figures 5.5 and 5.6 illustrate the thermal images of 

the plume and mixing zone of the site. Figure 5.5a shows the end edge of the heated plume in 

the middle of Birmingham Canal. This is a good proof for the BBC Mailbox building 

management that their site does not block the aquatic path as it does not cross the canal and 

ends in the middle. The red colour and the two green solid colours to the left and the right of 



 

the figure are the reflections of the opposite buildings as 

the site see Figure 5.5b. The blue colour is the canal ambient temperature.

Figure 5.5: Thermal and digital image for a deeply submerged discharge
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of the opposite buildings as they appear in the digital photo for 

. The blue colour is the canal ambient temperature. 

Figure 5.5a: Thermal image    

 

Figure 5.5b: Digital image 

Thermal and digital image for a deeply submerged discharge

Building 

reflections 

Plume 
edge  
 

Building 
reflections 

appear in the digital photo for 

 

 

 

Thermal and digital image for a deeply submerged discharge 



 

Figure 5.6: Mixing zone surface in submerged discharge
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Figure 5.6a: Thermal image 

 

Figure 5.6b: Digital image 

: Mixing zone surface in submerged discharge

 

 

: Mixing zone surface in submerged discharge 
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Thermal image Figure 5.6a, shows the edge of the mixing zone which is difficult to observe 

by a normal digital camera except the area when the heated water reached the surface, Figure 

5.6b. The temperature of the surface of the plume measured from the thermal image is about 

18˚C which equals to the thermocouple results. 

Similar images were taken with the thermal image camera at Canalside West, see Figure 5.7. 

The outlet is fully submerged and the thermal image is indistinct and inconclusive, not giving 

the distinct image of the plume experienced at CSB. The relative differential temperature of 

discharge and canal ambient temperature is 1.5˚C and the temperature was balanced when the 

flow reached the surface. Therefore the Canalside West site discarded a minimum heat load 

into canal and it was considered the best among the all sites studied in this project. 

Similarly at Lockside the outlet is fully submerged as shown in the digital image, Figure 5.8b. 

The green region in the thermal image in Figure 5.8a is where the thermal plume reaches the 

surface. The temperature at the region is about 18˚C then reduces to equal the ambient 

temperature of the canal. The higher temperatures indicated are the kerb stones on the canal 

embankment. 

 

 

Figure 5.7a: Thermal image of Canalside West 
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Figure 5.7b: Canalside West 

 

 

 

Figure 5.8a: Thermal image – Lockside 
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Figure 5.8b: Digital image – Lockside 

 

5.4 Model Tank Thermal Images 

As discussed in Chapter 4 the discharge velocities used in the laboratory experiment are 

small. The low flow discharge to the model tank is subjected to greater disturbance than the 

high flow discharge of the canal site. Therefore the use of the Thermal Camera in temperature 

measurements in the model tank is very important. The thermal images cannot predict the 

temperature of the plume in the layers below the surface but are still an important tool to use 

in the laboratory analysis. In the laboratory experimental trials performed (Table 4.1) the 

thermal camera plays a good role in temperature measurements as well as in the prediction of 

the surface area of the plume. Thermal image Figure 5.9a offers a very clear image of 

temperature distribution and the plume area on the surface of model tank. Figure 5.9b shows 

the experimental model tank. 

Figure 5.10 shows the thermal image of the submerged discharge into the model tank and how 

the heat dissipates quicker than the surface discharge. 

Figure 5.11 illustrates the screen of the Thermal Camera which shows an image of the model 

tank. The thermal Camera is able to measure the temperature of any point or along any line by 

producing a profile of temperature along that line. In the figure there is a line on the centre of 
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thermal plume on the surface of model tank. The temperature profile along that line is 

produced on the lower right hand side corner of the Figure 5.11. 

 

Figure 5.9a: Heat diffusion on surface of model tank (surface discharge) 

 

 

Figure 5.9b: Model tank 

Figure 5.9: Thermal and digital image of model tank 
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Figure 5.10: Heat diffusion on surface of tank (submerged discharge) 

 

 

Figure 5.11: Thermal Camera show temperature profile along the line on the centreline of 

plume 
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Finally all the measured temperatures of the thermal images are compared with the 

thermocouples measurements and they will be presented in the Results and Discussion 

Chapter 9.  

6. CFD Simulation 

6.1 Introduction 

The study of thermal plume discharge into shallow and still water experimentally were 

discussed in Chapters 3 and 4. In this Chapter the study will carry out modelling using one of 

the Computational of Fluid Dynamics CFD software packages,  FLUENT.  This is one of the 

most reliable CFD packages that are used worldwide for the analysis of fluid flow and heat 

transfer and used in this project to analyse the behaviour of the thermal plume. As an example 

of thermal discharge into the surface of the canal the analysis is initially performed on a CSB 

site. For the submerged thermal discharge the BBC Mailbox site is selected as an example.  

  

6.2 Computational Analysis 

FLUENT is a state of art computer program developed by the Fluent Incorporated Company 

to model heat transfer and fluid flow. It is also supplied as an educational software package 

and used by university students across the world. The basis of FLUENT is the solving of 

seven governing equations that are used in evaluating the thermal discharge and plume 

behaviour. The equations are; the continuity Equation (6.1), the momentum Equation in x 

direction (6.2), the momentum Equation in y direction (6.3), the momentum Equation in z 

direction (6.4), the thermal energy Equation (6.5), the state of water Equation (6.6) and the 

viscous shear stress Equation (6.7). 
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The software is used to solve all the governing equations in fluid flow and heat transfer. The 

solutions of the seven governing equations yields characteristics of the water flow such as: 

velocities in x, y, z directions (u, v, w), temperature T, density ρ, pressure P and viscosity µ. 

Every individual discharge type was modelled separately and the results for the centreline 

profiles, discharge layers profiles and flow path are presented within the following 

discussions. 

 

6.2.1 Surface Discharge – CSB Site 

The basic parameters used for modelling each site were; the discharge pipe diameter (0.15m) 

as located longitudinal on the surface of the canal, the discharge velocity (1.23m/s) and the 

discharge temperature (24°C). The canal ambient temperature used was (17°C). A section of 

the canal considered for the modelling was 20m in length (downstream), 10m width across 

the canal and 1.5m average depth. Three layers (planes) along the mixing zone were 

predetermined, in this case, a layer on the centreline of the discharge pipe, a layer on the 

surface of canal and a layer 0.6m below the surface. The three layers are all considered to be 

parallel to the centreline. Temperature diffusion at each layer was predicted using FLUENT 

with the results as presented in Figures 6.1, 6.2 and 6.3 each showing the plan view of the 

canal at the three different layers. 
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Figure 6.1: Heat diffusion on a plane at the centreline of the discharge pipe– CSB site 

 

 

Figure 6.2: Heat diffusion on a plane on the surface of canal– CSB site 
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Figure 6.3: Heat diffusion on a plane 0.6m below the surface of canal– CSB site 

 

The shape of the plume and the size of mixing zone obtained from the model are very clear in 

each figure with the edges of the plume being easily identified. The discharge pipe is shown 

on the right hand side where the temperature is at a maximum. 

The temperature dilution and velocity profiles along the centreline of plume are as presented 

in Figures 6.4 and 6.5. These profiles show high temperatures and velocities in the area close 

to the discharge point. This area is the core region of the plume and as mentioned previously 

the temperatures and velocities are always the highest levels. The temperature and velocity 

distribution on a plane normal to the centreline of plume are determined and the results are as 

presented in the side views of the plume in Figures 6.6 and 6.7. The discharge in these figures  

is located on the top right hand side as indicated, where the temperature and velocity are 

maximum. 
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Figure 6.4: Temperature dilution along the centreline of plume (0.075m) below surface– CSB 

site 

 

 

Figure 6.5: Velocity along the centreline of plume (0.075m) below surface – CSB site. 

Core region 

Inlet temperature 

Discharge velocity 1.23m/s 
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Figure 6.6: Heat diffusion on a plane normal to the centreline of plume (cross section) 

 

 

 

Figure 6.7: Velocity distribution on a plane normal to the centreline of plume (cross section) 
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6.2.2 Submerged discharge – Mailbox Site 

The parameters used for modelling; the discharge pipe diameter (0.35m) positioned 0.475m 

below free surface of canal, the discharge velocity (0.6m/s) and the discharge temperature 

(20°C). The canal ambient temperature was considered to be 17°C. A section of canal 

considered for the modelling was 20m length (10m upstream and 10m downstream), 15m 

width across canal and 1.5m average depth. Three layers (plane) along the mixing zone were 

predetermined; in this case a layer on the centreline of the discharge pipe, a layer on the 

surface of canal and a layer on the bed. The three layers are all considered to be adjacent to 

the centreline. Temperature diffusion at each layer was predicted by using FLUENT with the 

results as demonstrated in Figures 6.8, 6.9 and 6.10 each showing the plan view of the canal 

at the three different layers. The shape of the plume and the size of mixing zone obtained 

from the model are very clear in each figure with the edges of the plume being easily 

identified. The edges of the plume can be recognized easily. The discharge pipe is shown on 

the left hand side where the temperature is at a maximum. 

 

 

 

Figure 6.8: Heat diffusion on a plane at the centreline of the discharge pipe 
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Figure 6.9: Heat diffusion on a plane on the surface of canal 

 

 

 

Figure 6.10: Heat diffusion on a plane on the canal bed. 



 

The temperature dilutions for a range of layers

Figures 6.11a, were determined 

Figure 6.11a:

Figure 6.11b: Temperature along the centreline of plume at different layers

Figure 6.11: Centreline of plume at surface, bed and discharge layer
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for a range of layers along the centreline of the 

determined and the results as presented in Figures 6.11

Figure 6.11a: Centreline of plume at three layers 

 

: Temperature along the centreline of plume at different layers

Centreline of plume at surface, bed and discharge layer and centreline

temperature profile 

the plume, as shown in 

1b 

 

 

: Temperature along the centreline of plume at different layers 

and centreline 



 

 Similarly the velocity profiles along 

6.12a) are shown in Figure 6.12b.

Figure 6.12a:

Figure 6.12b: Velocity along the centreline of 

Figure 6.12: Centreline of plume at surface, bed and discharge layer and centreline velocity 
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Similarly the velocity profiles along a range of layers along the centreline of plume (Figure 

6.12a) are shown in Figure 6.12b. 

Figure 6.12a: Centreline of plume at three layers 

 

: Velocity along the centreline of plume at different layers

Centreline of plume at surface, bed and discharge layer and centreline velocity 

profile 

the centreline of plume (Figure 

 

 

plume at different layers. 

Centreline of plume at surface, bed and discharge layer and centreline velocity 
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The temperature and velocity distribution on a plane normal to the centreline of plume are 

presented in Figures 6.13 and 6.14, the discharge is located on the right hand side. 

 

Figure 6.13: Heat diffusion on a plane normal to the centreline of plume (cross section) 

 

 

Figure 6.14: Velocity distribution on a plane normal to the centreline of plume (cross section) 
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7. Theoretical Analysis 

7.1 Introduction 

In the previous Chapter the experimental and computational studies are investigated. In this 

Chapter the theoretical analysis is discussed. Although the FLUENT software is able to model 

most of the fluid flows and heat transfer issues, its applications can be difficult and need a 

good mesh to obtain the most reliable results.  This process needs a degree of expertise and it 

is this element of modelling that needs to be made more accessible to investigators who may 

be unfamiliar with FLUENT. The theoretical work in this Chapter is aimed to produce 

number of models which reduce the necessary technical expertise yet are equally reliable and 

specific as FLUENT in predicting the behaviour of thermal discharge into shallow and still 

receiving water. The models developed may be used by non technical investigators to 

evaluate the viability of discharging any heated water discharge into a still water environment. 

It is a necessity that good correlation between measured and predicted data should be 

achieved if the proposed modelling is to be accepted by the environment agencies.  The 

analyses are carried out separately for surface and submerged discharge. Main part of the 

analyses is focused on the submerged discharge as this is the most common arrangement to be 

found in any discharge design proposal. A two dimensional equation has also been formulated 

to predict the heat diffusion profiles if a surface discharge design is subsequently encountered. 

Six equations have been derived. One predicts the plume path line in submerged discharge, 

another plume half width whilst the remaining four predict the temperature and velocities 

along and across the path line. The first two equations allow a three-dimensional model to be 

developed to predict the size of plume in submerged discharge. 

The surface discharge model is derived from the advection diffusion equation whereas 

submerged discharge models are derived from the experimental measured data. 

 

7.2 Surface Discharge Mathematical Model 

This section is currently limited to the study of heated water surface discharge into the body 

of still receiving water. The work concentrates on the initial process – that of determining the 

heat diffusion profile and plume shape on the surface of the water. The domain in Figures 7.1 

show the flow directions, the coordinates and the diffusion coefficient directions involved in 

the mathematical model. The main equation used is the advection diffusion as shown in 



 

Equation 7.1. The left hand side of the equation represents flow and the right hand side 

represents the diffusions. To produce the model it 

diffusion is applied accordingly to suit the characteristics 

– that is across the flow and depth

which is considered longitudinal downstream of the discharge, is velocity dependant. Steady 

state condition is considered to

further downstream beyond the plume.
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In equation (7.1) “T” is the mean 

& z direction respectively and 

respectively. In fact they are summations of turbulent diffusivity plus molecular diffusion 

coefficient. In this instance 

diffusion value so this is neglected.

Figure 7.1:  Surface discharge f
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1. The left hand side of the equation represents flow and the right hand side 

. To produce the model it is considered that the coefficient of heat 

diffusion is applied accordingly to suit the characteristics in the lateral and vertical directions 

that is across the flow and depth-wise. The flow in the third direction, along the x axis, 

which is considered longitudinal downstream of the discharge, is velocity dependant. Steady 

state condition is considered to be when the temperature does not change with time and is 

further downstream beyond the plume. 
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the mean temperature, “t” is time, U, V, W are mean 

and Dx, Dy, Dz are turbulent diffusivity in x, y

respectively. In fact they are summations of turbulent diffusivity plus molecular diffusion 

In this instance the turbulent diffusivity is much greater than the

neglected. 

Surface discharge flow configuration, a. (sectional view), b. (plan view)

1. The left hand side of the equation represents flow and the right hand side 

considered that the coefficient of heat 

in the lateral and vertical directions 

wise. The flow in the third direction, along the x axis, 

which is considered longitudinal downstream of the discharge, is velocity dependant. Steady 

be when the temperature does not change with time and is 

)1(7.            

are mean velocity in x, y 

turbulent diffusivity in x, y & z direction 

respectively. In fact they are summations of turbulent diffusivity plus molecular diffusion 

greater than the molecular 

 

low configuration, a. (sectional view), b. (plan view) 
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The flow steady state, since temperature does not change with time. The discharge pipe is 

horizontal on the surface of canal, so the lateral and vertical velocities V, W are very small 

and neglected. The advection term in “x” direction is much greater than the diffusivity Dx 

(Roberts and Webster, 2002) so it is neglected. Equation 7.1 is reduced to: 
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In surface discharge the vertical diffusion Dz is small because the heated water remains on the 

surface as it has a smaller density than the receiving water and as has been observed from the 

thermal images, to produce a 2-dimensional heat diffusion model the Dz neglected. This yields 

Equation 7.2a:  
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Solution of the partial differential Equation 7.2a (Crank, 1970) gives: 
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At the discharge point of the jet the boundary conditions are: 

 

T = T0                    at   x=0                 -b < y < b 

T = Ta                    at   x=0                  b < y < -b 
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T0, Ta is discharge and ambient temperature respectively. 

If M is the total heat diffusion in canal with infinite length: 

 

 

)5(7.                                                                         TdyM ∫
∞

∞−

=  

 

 

Sub equation 7.4 into Equation 7.5: is giving the spreading of an amount M of heat discharge 

at x=0 
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Take the error function (erf) for the Equation 7.6 (Crank, 1970), and add the ambient 

temperature, yields: 
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“erf” is a standard mathematical function encountered in integrating the normal distribution 

(which is normalized form of the Gaussian Function) which is fitted with the plume half 

width, (erf) defined by: 
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Equation 7.7 gives the heat diffusion on the surface of canal where “p” is a principal 

parameter equal to Dy/U. 

The limitation of the Equations 7.7 is not applicable to the submerged discharge. The reason 

for that is that the effects of buoyancy are not considered in the main Equation of heat 

diffusion as in equation 7.1. 

  

7.3 Turbulent Diffusivity D 

In reality the turbulent diffusivity is variable from one location to another, even along the 

same plume. It varies in all directions as its value is influenced by many parameters such as 

flow, cross section of canal, shape of bed, concentration of discharge and ambient 

temperature. In fact its value is hard to predict and for that reason researchers undertaking 

thermal discharge studies tend to avoid the use of this value. Empirical data are used to 

determine the turbulent diffusivity at each grid point. The advection diffusion Equation 7.1 

for heat and steady flow is used to evaluate the value of D in all directions x, y and z. These 

are obtained by substituting the mean value of the collected measured data (Temperature: T 

and velocity in x, y, z directions: U, V and W respectively) from the field trial on canal site. 

The value of D is a summation of thermal molecular diffusion and turbulent diffusivity. The 

latter is much greater than the first and for that reason the molecular diffusion can be 

neglected. The number of grids in the survey area on canal site is 11 x 11 at each layer, with 

grid steps 0.5m longitudinally and 0.2m laterally, see Figure 7.2.  

The boundary layers grids (i.e. the top and bottom rows, left and right columns) are boundary 

conditions, the remaining grids are (9 x 9) at three planes 0.2m, 0.4m, 0.6m below the surface. 

These grids are connected to create 128 element bricks, 64 between upper and middle layer 

(four grids from each layer) and another 64 elements between middle layer and lower layer, 

see Figure 7.3. The turbulent diffusivity may then be determined for the centre point of each 

element. 

 



 

Figure 7.2: Show (surface layer) grids points where the temperature and velocity been

Figure 7.3: Schematic of the created blocks from 

128 

Figure 7.2: Show (surface layer) grids points where the temperature and velocity been

measured at CSB site 

Figure 7.3: Schematic of the created blocks from the grids at the mixing zone

Grid points 

 

Figure 7.2: Show (surface layer) grids points where the temperature and velocity been 

 

at the mixing zone 
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7.4 Submerged Discharge Mathematical Model 

The theory related to the submerged thermal discharge is different to that of surface discharge 

in several ways. In the last section the theoretical analysis for surface discharge was 

investigated and an equation for heat diffusion presented. In submerged discharge the effects 

of buoyancy is much greater and the deflection of the plume towards the surface will occur. In 

addition the behaviour of the thermal plume below the free surface is the main issue of 

submerged discharge. Therefore six equations are derived from the empirical data to predict 

the behaviour of submerged plume. One equation is to determine the “core” path line of the 

plume moving to the surface of the receiving water, an additional equation for plume half 

width, and another equation is to predict the temperature profile along the path line. A fourth 

equation is used to predict the velocity profile along the path line and the last two equations 

are to determine the temperature and velocity profiles across the path lines. The 3D model 

produced needs MATLAB software for its effective application. From the equations it is 

found that the profiles of the thermal plume within the shallow and still water could be 

represented as function of: 

 

Plume pro�iles � ��  ∆�, ��, ��, ��, ��               �7.8a� 
 

And dimensionless parameters: 

 

Plume pro�iles � � !"# , ��� $ �� ,
� $ ��%& '               �7.8b� 

 

(Note that for all the produced equations these parameters may be abstracted, divided or 

multiplied with one to another to form the final model as in Equations 7.10b and 7.10c). 

Where Fd is a dimensionless densimetric Froude Number, ∆T is temperature difference 

between discharge and receiving water ambient temperature, U0 is discharge velocity, LM is 

the length scale, H is the depth of receiving water and z0 is the depth of the discharge pipe 

(from centre of the pipe to the bed). The main parameter which is involved in all the equations 

is the Length Scale (LM), according to (Jirka, 2004) and works done by others in this field; 

(LM) is the best parameter for the length scale which makes the derived equations 

dimensionless: 
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%& � �)4��.+,��"#                 �7.9� 
 

The procedures followed to derive the six equations are as follow: 

1. Find the equation’s best fit to the measured data. This may be of any form, typically 

exponential, polynomial, etc. 

2. Apply the fitted equation to each experimental trial Run and a number of equations 

will be obtained. 

3. Solve the obtained equations in step 2 simultaneously to determine the constants in the 

fitted equation for that specific Run. 

4. Repeat the steps 2 and 3 for all the experimental Runs. Now the constants are known 

for all the Runs and vary from one Run to another 

Find the relation of each constant with the effected parameters (Table, 4.1). 

5. Determine the constants in the related equations, step 5 and then substitute the values 

in the equation in step1.  

The following sections present the associated equations 

  

7.4.1 Plume Path Line 

In submerged discharge the outfall is located below free surface of the canal and the thermal 

plume moves to the water surface after a certain distance. The laboratory experimental 

measured data in Figure 8.22 show that the exponential Equation 7.10a gives a best fit to the 

plume trajectory to the surface. The exponential is a convenient and efficient equation for 

thermal plume analysis, gives the parabolic type of the fluid dynamics governing differential 

equations; continuity Equation 2.2, momentum Equations 2.3 and 2.4, energy Equation 2.5 

and heat diffusion Equation 2.12, described in the literature review. These equations also used 

by FLUENT to model the fluids flow and heat transfer which have a parabolic shapes similar 

to the exponential equation. 

 

� � . /01              �7.10a� 
 

Where, z is the vertical axis through the depth of the canal, x is the horizontal axis along the 

plume, “a” and “α” are constants. For every laboratory experimental Run the path line of the 

dyed heated plume is measured whilst it was deflecting to the surface. This means that at any 
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distance “x” along the plume the value of “z” was measured. Then, these measured values of 

“z” and “x” for each Run substituted to the Equation 7.10a, a number of equations obtained 

and solved simultaneously to determine the constants “a” and “α”. This procedure was 

repeated for all the experimental trials in Table 4.1. After the constants been determined for 

all the experimental trials it is found that they are varied from a Run to another because each 

Run has different parameters. Now to make the Equation 7.10a applicable to any thermal 

plume discharge, the constants’ relationship to the relevant parameters must be found. There 

was a linear relation between the constants “a”, “α” and the parameters 
4567, 

85 679:45 respectively 

as follow:  

. � ; ��"# < =                  �7.10b� 
 

0� ;1 �� "#� $ �� < =1                    �7.10c� 
 

Where z0 is the discharge pipe depth from the centre of the pipe to the bed, Fd is densimetric 

Froude number, D0 discharge pipe diameter, H is the depth of the water in the tank (canal), A, 

B, A1 and B1 are constants. Solve the Equation 7.10b for all the Runs to determine the value 

of the constants “A” and “B”, similarly find the constants “A1” and “B1”. The following were 

found (A = 0.1, B = 0, A1 = 1.4 and B1 = 0), substitute them to the Equations 7.10b and 7.10c 

will result:  

  

. � 0.1 ��"# 

 

0 � 1.4 �� "#� $ �� 

 

Now substitute the “a” and “α” values to the Equation 7.10a to get the equation that models 

the path line of the plume, Equation 7.10. It is clear from the equation that the main dependant 

parameters involved in the path line trajectory is the densimetric Froude number, discharge 

pipe diameter and the depth of the discharge pipe.   

  

� � ?0.1 ��"# exp !1.4
�� "#�� $ ���

A%&'B $ 0.1 ��"#                   �7.10� 
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Note that the last term 0.1 4567  is a small value abstracted from the equation 7.10 to make z = 0 

when x = 0, i.e. the plume path line started from the centre of the discharge pipe not above it. 

The length scale (LM) is cancelling the effects of the length units (dimensionless); it is applied 

to all the derived equations. The plume path line graphs will be presented in the next chapter 

and the measured and the predicted data are tabulated in Appendix 8. 

 

7.4.2 Plume Half Width 

In the laboratory experimental trials dyed heated water was discharged into the model tank to 

see the behaviour of the plume and to measure the size of the plume. The lateral distances 

from the plume centreline to the edge of the plume (plume half width) were measured for 

every Run. From the dyed heated plume in Figure 4.13 can be said that the quadratic Equation 

7.11a gives a best fit to the plume half width, therefore it is selected as a convenient and 

efficient equation for thermal plume half width. The polynomial quadratic Equation 7.11a 

gives the parabolic type similar to that given by the fluid dynamics governing differential 

equations; continuity, momentum, heat diffusion and energy equation in modelling the 

thermal plume profile. 

 

CD � .� < .EA < .+A+               �7.11a� 
 

Where “yh” is the lateral distance from the centreline to the edge of the plume (plume half 

width), “a0”, “a1”, “a2” are constants and “x” is distance along the thermal plume. For every 

experimental “Run” a number of “yh” measured along the longitudinal axis “x” and then they 

substituted to Equation 7.11a, as a result a several equations obtained. These equations were 

solved to determine the constants “a0”, “a1”, “a2” for every Run. Because the parameters used 

in the experimental Runs were different in value as shown in Table 4.1 the constants were not 

same. This indicated to the effects of the parameters on the values of the constants. To 

generalize the Equation 7.11a to appropriate for any application of thermal plume discharge 

into shallow and still water, the relation of the constants with the effected parameters 

determined. It is found that the constant “a0” in every Run was equal to the radius of the 

discharge pipe in that Run, this is shown that the plume half width is equal to the discharge 

pipe radius when x = 0. 
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.� � ��2                 �7.11b� 
 

The constants “a1” and “a2” were relating linearly to the discharge pipe diameter and it’s 

depth as follow: 

 

.E � ;�� < =                �7.11c� 
 

.+ � ;1�� < =1                 �7.11d� 
 

Substitute the discharge pipe diameter and the discharge pipe depth for each Run to the 

Equations 7.11c and 7.11d, two sets of equations will be obtained, a set of the constant “a1” 

equations and a set of constant “a2” equations. Solve each set of the equations simultaneously 

to find that (A = 15.5, B = 0, A1 = 0.1 and B1 = 0), substitute them to the Equations 7.11c and 

7.11d yield: 

 

.E � 15.5�� 

 

.+ � 0.1�� 

 

Substitution of the above values to Equation 7.11a yields Equation 7.11 which determines the 

half width of the plume.  

 

CD � ��2 < 15.5 ��%& A $ 0.1 ���%&�+ A+                     �7.11� 
 

7.4.3 Temperature along Plume Path Line  

After the plume path line has been measured for all the experimental trials by using the dyed 

water, the temperature along that line measured. The measured temperatures “T” along the 

plume path line in Figure 8.23 shown that the exponential Equation 7.12a gives a best fit for 

the measured temperature ratio curve. The exponential is a convenient and efficient equation 

for thermal plume temperature decay. The exponential equation gives the parabolic shape for 
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the heat dilution similar to the energy Equation 2.5 and heat diffusion Equation 2.12 used in 

modelling temperature profile of the thermal plume. 

 

� $ �I�� $ �I � . /:01              �7.12a� 
 

Where Ta is the tank water ambient temperature, T0 is the discharge temperature; “a” and “α” 

are constants. All the measured temperatures in a single experimental “Run” with their 

distance “x” from the outlet substitute to Equation 7.12a formed a number of equations. These 

equations solved simultaneously to determine the constants “a” and “α”. This method 

repeated to determine the constants values for all the trials tabulated in Table 4.1. The 

obtained constants were compared with the parameters in each Run it was found that the 

constant “a” is equal to one. Whilst the constant “α” was relating linearly with the position of 

the discharge pipe and length scale  
9:45JK  as follow: 

 

0� ;� $ ��%& < =                   �7.12b� 
 

Substitute the value of α, H, z0 and LM for each Run to the above equation; solve the obtained 

equations from all the experimental Runs yields (A = 3.2 and B = - 1.89). Substitute the 

constant A and B to the Equation 7.12b results: 

 

0 �  3.2� $ ��%& $ 1.89                  �7.12c� 
 

The constants in Equation 7.12a replaced with the effected parameters resulted the T equation. 

The predicted value of T in this instant were not good fitted the measured temperature. 

Therefore the constant B changed for each Run to make the predicted value best fits the 

measured data. This repeated for each Run, now new values for B obtained and they were 

different for each Run. These values were relating linearly with the parameter Fd as follow: 

 

= � ;2"# < =2               �7.12d� 
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Where A2 and B2 are constants, their values determined by solving the B equation for all the 

Runs, it was found that (A2 = 0.06, B2 = 0). Substitute these values to Equation 7.12d gives: 

 

= � $0.06"# 

 

Substitute the values of A and B to the equation 7.12b yields: 

 

0 �  3.2� $ ��%& $ 0.06"#                 �7.12e� 
  

Substitute the Equation 7.12e to Equation 7.12a to obtain the Equation 7.12 which determines 

the temperature along the path line of the plume. 

 

� � N��� $ �I� exp O!$3.2� $ ��%& $ 0.06"#' A%&PQ < �I             �7.12� 
 

7.4.4 Velocity along Plume Path Line 

The measured velocities along the path line of the plume, Figure 8.25 shown that they are best 

fitted the exponential curve Equation 7.13a, and therefore it is selected to form the velocity 

equation. The exponential is a convenient and efficient equation for thermal plume velocity 

decay. The exponential equation has a parabolic shape similar to the fluid dynamics 

governing differential equations; continuity Equation 2.2 and momentum Equations 2.3 and 

2.4 stated in the literature review. 

The measured velocities for every experimental trial substituted to the Equation 7.13a along 

with their distances “x” from the discharge outlet. The constants “a” and “α” were known for 

all the Runs and they were varied from a Run to another depending on the effected parameters 

values. 

 

� � . /:01              �7.13.� 
 

A comparison between the constants values and the parameters values undertaken to alternate 

the constants to effected parameters. It was obvious that the constant “a” equal to the 
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discharge velocity “U0”. Whilst the constant “α” was relating linearly with discharge pipe 

location, canal depth and the length scale  
9:45JK  as follow 

 

. �  ��               �7.13b� 
 

0 � ;� $ ��%& < =               �7.13c� 
 

The values of the constants A and B were determined by solving the Equation 7.13c for all the 

Runs, (A = 0.26, B = - 2.11). The Equations 7.13b and 713c were substituted to Equation 

7.13a, the predicted data was not good fitted the measured velocities. Therefore a procedure 

similar to that in the last section was carried out to determine the value of the constant B as a 

function of an effected parameter. It was found that (B = - 0.066Fd), and then the constants A 

and B were substituted to Equation 7.13c as follow: 

  

0 �  0.26� $ ��%& $ 0.066"#               �7.13d� 
 

Finally the Equations 7.13b and 7.13d substituted to the Equation 7.13a result the Equation 

7.13 which predicts the velocity along the plume path line.  

 

� � �� exp O!$0.26� $ ��%& $ 0.066"#' A%&P                 �7.13� 
 

7.4.5 Temperature across the path line 

The last two equations derived to predict the temperature and the velocity along the path line 

of the plume as function of the longitudinal axis “x”. Whist the temperature and the velocity 

across the path line will be predicted as a function of the lateral axis “y”. As can be seen from 

Figures 8.26 – 8.30 the lateral measured temperatures have exponential shapes, so the 
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exponential Equation 7.14a selected to form the lateral temperature equation. The reason of 

using the exponential among the other functions as mentioned in the previous sections is 

given the parabolic type of the fluid dynamics governing differential equations described in 

the literature review. 

 

� � . /:0RS               �7.14a� 
 

The measured temperatures for every Run substitute to the Equation 7.14a and the constants 

“a” and “α” determined. The constants values compared with the parameters values for all the 

Runs. It was found that the constant “a” is equal to the peak temperature “T” along a lateral 

axis “y”. This means that the constant “a” is equal to the path line “core” temperature where it 

is value is higher. Therefore the Equation 7.12 that predicts the path line “core” temperature 

replaced the constant “a” in the Equation 7.14a. The constant “α” was relating to the location 

of the discharge pipe as in Equation 7.14c. 

 

. �  N��� $ �I� exp O!$3.2� $ ��%& $ 0.06"#' A%&PQ < �I                �7.14b� 
 

0 �  ;� $ ��%& < =               �7.14c� 
 

The values of “α”, H, z0 and LM in each Run were substituted to Equation 7.14c, a set of 

equations obtained, solved simultaneously to find the values of (A = 5.5 and B = 0). 

Substitute the values of A and B to Equation 7.14c results: 

 

0 �  5.5� $ ��%&                �7.14d� 
 

The equations 7.14b and 7.14d substituted to the Equation 7.14a gave the Equation 7.14 to 

determine the temperature profiles across the path line of the plume. To avoid the effects of 

the units of the length the lateral distance “y” divided by plume width “2yh”. Plume width 

“2yh” is better than the LM (length scale) to make the lateral axis dimensionless because the 

plume width is the maximum lateral distance “ymax” within the mixing zone. 
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��A, C� � T��� $ �I� exp O!$3.2� $ ��%& $ 0.06"#' . A%&P expO$!5.5� $ ��%& ' . C+
�2CD�+PU

< �I          �7.14� 
 

7.4.6 Velocity across the path line 

Similar procedures as in the previous section were followed to derive equation for the velocity 

across the path line. The exponential Equation 7.15a was best fitting the measured data curve. 

Based on the theory that the exponential equation is given the parabolic type of the fluid 

dynamics governing differential equations, the Equation 7.15a selected to model the lateral 

velocity profile. 

 

� � . /:0RS               �7.15.� 
 

The constant “a” was equal to the velocity at the path line of the plume therefore it replaced 

by the Equation 7.13, whilst the constant “α” was relating to the parameters which formed the 

location of the discharge pipe, Equation 7.15c. 

 

. �  �� exp O!$0.26� $ ��%& $ 0.066"#' A%&P               �7.15b� 
 

0 �  10.5� $ ��%&                 �7.15c� 
Substitute Equations 7.15b and 7.15c to the Equation 7.15a results Equation 7.15 to predict 

the velocity profiles across the plume path line. The effected parameters are similar to those in 

the equation along the plume path line.  

 

��A, C� � �� exp O!$0.26� $ ��%&
$ 0.066"#' . A%&P expO$ !10.5� $ ��%& ' . C+

�2CD�+P         �7.15� 
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In all the above cases the curves of best fit have obtained by using the various parameters 

from the laboratory experimental trials. The measured and predicted data are tabulated in 

Appendices 8, 9 and 10 and will be discussed in the results and discussion section. 

In fact there are infinitely many choices of mathematical functions that will approximate the 

experimental data curve, the polynomial quadratic equation selected to model the plume half 

width. The others look exponential as shown in the presented graphs in results and discussion 

section, therefore the exponential approximation were used to model the plume path line, 

temperature and velocity which give something similar to the other functions.  

 

7.5 3-Dimensional Model of Submerged Discharge  

The 3-dimensional model of the size of the plume below the free surface of the canal has been 

derived and presented graphically in Figure 7.4. A number of equations have been used to 

produce this 3-D model, their formulation being achieved through a mathematical procedure 

as follows. 

 

 

Figure 7.4: 3-D model of the size of the thermal plume, Run 6 of the experiments 
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The final model is formulated using the experimental data. The edges of the plume are 

determined from the flow of dyed water as shown in the digital images with mathematical 

equations derived to fit the edges. An equation is derived from the experimental data to 

predict the plume half width and another produced to determine the upper vertical edge of the 

plume. These two equations are combined with the equation of the thermal plume centre path 

line to form the 3-D model. Figure 7.4 shows the 3-D size of the thermal plume below the free 

surface of the receiving water. MATLAB software is needed to create the final 3-D model. 

Appendix 7 presents the MATLAB code of the 3-D model of the size of the plume.  

 

8. Results and Discussion 

8.1 Introduction 

In this chapter the results from the experiments, thermal images, computational and 

mathematical analyses will be presented and discussed. For the surface discharge type of 

installation there was the possibility to gather data from on-site measurements.  As such the 

temperature along and across the centreline of the plume as measured from the experiments 

are used for comparison with the theoretical predictions. Note that in case of surface discharge 

only temperature has been modelled. For the submerged discharge the temperature and 

velocity along and across the path line of the plume as measured using the laboratory 

experiments are presented and compared with the mathematical predictions. The predicted 

models for both types of discharge are validated against the canal site measured data. Surface 

thermal discharge and submerged thermal discharge are discussed separately starting with the 

surface discharge.  

 

8.2 Surface Discharge  

The Central Services Building CSB site at the University of Huddersfield is an example of a 

canal site in which the thermal plume discharges onto the surface of the water. Two case 

studies are performed on the canal site and the data for both studies are presented in 

Appendices 3 and 4. In the preliminary case study the temperatures are measured on a plane 

just above the centreline of the plume (at 50mm below the surface) while in the refined case 

study the temperatures are measured on a discharge layer 75mm below the surface. Since the 

theoretical model predicts the temperature on the centreline of plume the refined case study 
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has been used primarily in the investigations. In the following sections the temperature decay 

along and across the centreline of the plume for the experiments and the theoretical analysis 

will be presented and discussed. 

 

8.2.1 Temperature dilution along the centreline of the plume 

The centreline of the plume is a straight line from the centre of the discharge pipe along the 

plume length. It is the core of the plume within surface discharge profile where the discharge 

temperature is higher than any region within the mixing zone. Because of this the majority of 

the thermal plume studies are focused on the centreline of the plume. 

The methodology followed in this research and investigated in the previous chapters started 

with a case study on the real canal site. The maximum temperature measured in the field trial 

was 24˚C at the outlet of the discharge, and the velocity at the same point was 1.23m/s. The 

discharge pipe diameter was 0.15m located at the surface of canal as it is illustrated in Figure 

3.11. The data collected from the initial survey has been presented and discussed in Chapter 3. 

From the data it was possible to plot the resulting temperature along the centreline of the 

plume as shown in Figure8.1.  

 

 

Figure 8.1: Measured temperature along the centreline of plume (field trial) 
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After the experiments on the canal site, laboratory experiments were carried out to study the 

plume more readily and controllably in a scale model tank. The model tank was designed and 

built to simulate the canal site using the dimensionless parameter densimetric Froude Number 

Fd. For convenience the size was selected to be 1/10 scale thus the discharge pipe diameter in 

the model tank became 0.015m. The discharge temperature must not change and the velocity 

was calculated to be 0.4m/s. For such an arrangement the temperature along the centreline of 

plume was measured and presented in Figure 8.2. Reference to Figure 8.1 shows the results to 

be very close. 

The purpose designed tools and instruments as used in collecting the data is presented in 

Appendix 2. The Thermal Camera is one of the main pieces of equipment used in the current 

research to measure temperature distribution on both the surface of canal and model tank. The 

advantages of using thermal images are the very clearly defined surface area of the plume and 

mixing zone as well as the edges of the plume and its penetration across the surface of the 

water.  

 

 

Figure 8.2: Measured temperature along the centreline of plume (model tank) 
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Figure 8.3: Thermal Camera results 

The disadvantage of the thermal camera is that it is not able to detect the temperature 

distribution below the surface, particularly with on

thin access windows within the tank walls so the thermal images could be recorded but this 

was not particularly successful. Figure 8.3 demonstrates the thermal camera results for the 

canal site. The lower half of the figure

the centre of plume in the thermal image. The maximum temperature along the line 22.2

and the minimum is 17.8˚C.

maximum temperature of the plume is 24

thermocouples at the centre of the outfall. The results of the computational work by using the 

CFD package FLUENT gave a detail results for the plume behaviour and was presented 

earlier in Chapter 6. This investigated the Temperature and veloci

layers within the mixing zone, the temperature along the centreline of the plume along a 

length of 20m from the outfall being presented in Figure 8.4.

temperature for the distance 0 to 0.2m along the p

the plume. It is seen that the temperature 

discharge point. This profile will be compared with the experimental measured data, 

both will be used to prove the validity of the derived model.
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Figure 8.3: Thermal Camera results – CSB site 
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Figure 8.4: Temperature along the centreline of plume predicted by FLUENT – CSB site 

 

FLUENT makes use of heat transfer and fluid flow equations to undertake a thermal study of 

the discharge and as such it requires little intervention to produce acceptable results.  

Although the results obtained from FLUENT are as presented in Chapter 6, the current 

research makes use of mathematical equations to predict the behaviour of thermal plume. The 

principal reason for this approach emanates from one of the objectives of the research in that 

it must be readily understood and not make use of software that requires significant expertise 

to create the differing models that may be encountered. FLUENT is an excellent package but 

it requires cost of software, its updating and specialist training to implement. In essence the 

aim of this research is to produce an interactive model that can be readily modified and run by 

non technical British Waterways personal. 

The mathematical Equation 7.7 was derived from the heat diffusion Equation 7.1 and 

intended to determine the temperature distribution on the surface of mixing zone. The 

equation is not contained the effects of buoyancy even gravity so it is applicable only on the 

surface thermal plume when the discharge is located on the surface. The main parameter in 

the equation is “p” which is equal to the turbulent diffusivity divided by the discharge 

velocity. The turbulent diffusivity affected is the lateral diffusivity Dy across the plume. 
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Lateral turbulent diffusivity Dy for the CSB site is calculated from the method described in 

section 7.3 and some of the values are presented in Table 8.1.  

 

 
Turbulent Diffusivity Dy m

2 / s 

 Distance along 

plume x(m) 

Distance across plume y(m) 

0.1 -0.1 

0.75 0.0373 0.0373 

1.25 0.007 -0.017 

1.75 0.0053 -0.0036 

2.25 0.0026 0.0022 

2.75 0.0973 0.0158 

3.25 0.0505 0.0074 

3.75 0.0246 0.0304 

4.25 0.0366 0.0257 

      

  Average 0.0224625 

Table 8.1: Lateral turbulent diffusivity Dy 

 

The results produce some negative values of turbulent diffusivity caused by the transfer of 

heat from a low heated element to a high heated element due to turbulent eddies. This 

negative turbulent diffusivity has been investigated theoretically by Avramenko and Basok, 

(2006) where they showed this negative diffusivity being as a result of the turbulent eddy 

flows. The average value of Dy is 0.02246 m2 / s, therefore the value of “p” becomes 0.018m. 

To determine the temperature profile along the centreline of plume, the lateral distance “y” 

should be cancelled from Equation 7.7. The result will be as illustrate in Equation 8.1. 

 

(8.1)                       )
.2

)(()( Ta
xp

b
erfTaToxT +−=

 

 

Figure 8.5 show the temperature dilution along the centreline of the plume as predicted by 

Equation 8.1. It shows a dramatic loss in the temperature within a distance 1m from the 

discharge point and then the temperature remains steady at around 18°C after 2m from the 

discharge. 
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Figure 8.5: Centreline temperature decay (mathematical equation) 

 

Finally it is necessary to undertake a comparison of the data obtained from the experiments 

and the theoretical results. The field trial and model tank temperature measured by 

thermocouples along with the temperature measured by the thermal camera are compared 

with the results of analyses by FLUENT and mathematical model, see Figures 8.6 and 8.7. 

Figure 8.7 shows the comparison of the dimensionless results, the temperature is divided by 

the discharge temperature and the distance along the plume is divided by the maximum value 

of x to give the dimensionless values. As predicted by (Stolzebach and Harleman, 1971) the 

surface thermal discharge is divided into four regions. These regions can be seen from the 

results demonstrated in Figure 8.8 – the core, the entrainment, the stable and the heat loss 

region. 

1. Core region: in which the centreline temperature is remaining very high  

2. Entrainment region: the centreline temperature decreased sharply 

3. Stable region: the centreline temperature remains relatively constant  

4. Heat loss region: where the heat loss will resume, then beyond this region the plume 

will lose its property and fully mixed with the receiving water. Figure 8.8 

demonstrates the regions on the graph, except the heat loss region which may happen 

after 5m from the outfall. 
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Figure 8.6: Comparison of the predicted centreline temperature against the experimental and 

FLUENT data     

 

Figure 8.7: Comparison of the predicted centreline temperature against the experimental and 

FLUENT data (dimensionless)    
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Figure 8.8: The structure of the heated surface discharge 

 

The results of the various trials are shown in Figure 8.6 to validate the derived model against 

the other data. The solid line indicates the predicted model data whilst the symbols indicate 

the measured results. The trapezium indicates the field data temperature as measured by the 

thermocouples whereas the triangles indicate the field data measured by the thermal imaging 

camera and the round symbols present the FLUENT results. The derived model results are 

very close (96%) to the canal measured data. The FLUENT results also compare well to the 

measured canal data..     

It must be noted that the thermal camera results show only the surface temperature of the 

discharge whereas the rest are calculations and measurements 75mm below the surface.   

Regardless there is a good match with all the results.  

 

8.2.2 Temperature dilution across the centreline of plume 

The temperature across the centreline of plume (y axis) will be presented in this section. The 

comparison is made between the mathematical results of Equation 7.7 and field trial measured 

data. The Lateral temperature distributions are determined at ten locations of (x) starting from 
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0.5m to 5m from the outfall on the centreline of plume (discharge layer). The results are then 

validated against the canal measured data with the comparisons shown in Figures 8.9 – 8.18. 

For each figure the symbols indicates to the canal measured data, while the solid line indicates 

to the mathematical results.  

It can be seen from the figures that the general form of the graphs are similar, with the 

mathematical model predicting lower temperatures than measured in some cases. This is 

certainly the case with measurements less than 3metres from the outlet but not so with 

extended distances. In fact the higher measured temperature appeared in the region outside the 

plume, as in figure 8.9, where the width of the plume is around y = ±40cm. Any measured 

temperature beyond that point should be equal to the canal ambient temperature of 17°C as 

been modelled but because of the air ambient temperature the canal surface temperature 

indicates a slightly higher temperature of around 17.15°C. Similarly for the remaining profiles 

with the plume width equal to y = ±1m and greater the predicted results are in a good fit with 

canal measured data, as shown in the figures 8.14 – 8.18. 

 

 

 

Figure 8.9: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 0.5m 
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Figure 8.10: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 1m 

 

 

Figure 8.11: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 1.5m 
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Figure 8.12: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 2m 

 

 

Figure 8.13: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 2.5m 
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Figure 8.14: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 3m 

 

 

Figure 8.15: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 3.5m 
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Figure 8.16: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 4m 

 

 

Figure 8.17: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 4.5m 
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Figure 8.18: Temperature across the centreline of plume for the mathematical model and field 

trial at x = 5m 

 

8.2.3 Temperature distribution on a plane on the centreline of plume 

The two dimensional Equation 7.7 was derived for the case of surface thermal discharge to 

predict the temperature distribution on a plane on the centreline of plume. In the previous two 

sections temperature profiles are presented one dimensional along a single line. In this section 

heat diffusion profiles on a plane at the discharge layer will be presented. 

By substituting all the parameters into Equation 7.7 the result will be the heat diffusion profile 

as illustrate in Figure 8.19a, while Figure 8.19b shows the heat diffusion measured from the 

field trial. The area around the discharge point in Figure 8.19b is bigger than that in Figure 

8.19a. The reason is the number of measured data used to create the field trial image is small 

in relation to those used to create the mathematical model figure (dense data). The turbulent 

diffusivity is influenced by the width of the discharge plume so the bigger the value used for 

D results in a wider plume as shown in Figure 8.20 whereas Figure 8.21 shows the heat 

diffusion profiles for a smaller value of turbulent diffusivity D. 
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Figure 8.19a: Heat diffusion on a plane at the discharge layer for p = 0.018m (mathematical 

model) 

 

Figure 8.19b: Heat diffusion on a plane at the discharge layer (field trial measured data) 
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In Figure 8.20 the lateral turbulent diffusivity Dy is higher than that in Figure 8.19a, thus the 

discharge plume is wider, whilst the temperature along the centreline is lower. In addition the 

plume half width will be bigger. The increased in value of Dy parameter “p= Dy/U” will 

increase as can be seen from that shown in Figure 8.19a “p” is 0.018m whilst in Figure 8.20 

“p” is 0.052. 

Figure 8.21 show a sharp, penetrating, shape of plume as the lateral turbulent diffusivity is 

small and the discharge heated water moves faster through the water. In addition the 

temperature dilution along the centreline of the plume is slower than the other two previous 

cases. 

 

 

Figure 8.20: Heat diffusion on a plane at the discharge layer for p = 0.052m 
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Figure 8.21: Heat diffusion on a plane at the discharge layer for p = 0.0044m 

 

8.3 Submerged Discharge 

In submerged discharge system the results and discussion are based on the mathematical 

models derived from the laboratory empirical data and the canal site studies. As the thermal 

images record only surface temperature profiles these will not form the focus of this section, 

neither will the FLUENT results.  However the thermal images obtained on the canal site 

studies along with their digital images are presented and discussed in Chapter 5 whereas the 

FLUENT results are presented in detail within Chapter 6. As such the field trial experiments, 

laboratory experiments and the mathematical model are considered in depth. In the current 

study of submerged discharge the investigation will focus on behaviour of thermal plume 

below the free surface of canal. From the total of 24 experiments (see Table 4.1) carried out in 

the laboratory randomly five have been selected for presentation and to compare them against 

the mathematical results, Table 8.2. The five selected runs have different densimetric Froude 

Numbers of (Fd14.39, Fd41.48, Fd38.59, Fd31.51 and Fd16.29) for runs number (4, 6, 18, 20 

and 23) respectively. With the graphs presented in this section the symbol denotes to the 

experimental measured data and the solid line graph denotes the predicted data. 
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Pipe 

diameter 

D₀ (cm) 

  

z₀ 

(cm) 

  

H 

(cm) 

  

∆T=T₀-

Ta 

  

U₀ 

(cm/s) 

Buoyancy 

g' (cm/s²) 

  

Q 

(cm³/s) 

Buoyancy 

flux 

B₀ 

(kgm²/s²) 

Momentum 

Flux 

M₀ (m⁴/s²) 

Length 

scale 

Lм 

(cm) 

  

Re 

  

Fd Run 

4 1.2 14.5 21.5 7 19 1.45 21.48 31.22 408.07 16.25 2496.19 14.39 

6 1.2 13.5 21.5 3 34 0.56 38.43 21.52 1306.74 46.86 4060.84 41.48 

18 0.8 15.5 21.5 8 45 1.70 22.61 38.43 1017.36 29.06 4028.81 38.59 

20 1.2 7.7 16.7 8 45 1.70 50.87 86.48 2289.06 35.59 6043.21 31.51 

23 0.8 11.5 18 8 19 1.70 9.55 16.23 181.37 12.27 2551.58 16.29 

Table 8.2: The five experimental runs reported in the current study 

 

8.3.1 Plume Path Line 

In surface discharge model the centreline of plume is a straight line located along the centre of 

discharge pipe just below the free surface of receiving water. In submerged discharge the 

centreline of the plume is located at a certain distance below the free surface of the receiving 

water and progressively rising to the surface dependant on the number of parameters. In 

general the entrainment section above the plume centreline will increase thus causing the 

plume to move to the surface. The centreline of the plume when it is moving to the surface is 

called the “path line”. The upward curve of the path line will be faster with reducing depth of 

discharge and to zero when the discharge pipe is located on the surface. This feature means 

the depth of the discharge pipe z0 becomes one of the main parameter influencing the plume 

path line, as shown in Equation 7.10b. This equation is derived from the experimental trails 

performed in laboratory, at each trial the path line of the plume is determined then the 

equation of the curve is formulated.  Figure 8.22; demonstrate the theoretical results obtained 

from the Equation 7.10b compared with the experimental measured data. The figure explains 

the exact path of the centreline of the plume from the discharge pipe to the free surface of the 

receiving water. The measured experimental data of the path line and the obtained theoretical 

data are tabulated in Appendix 8. The smallest densimetric Froude Number of the 

experiments run moves to surface before the other runs as demonstrated in Figure 8.22, whilst 

the biggest densimetric Froude Number run is not the last one to move to the surface. The 

reason is the bed effect which delays the path line deflection towards the surface as the plume 

tends to remain attached to the bed. A slight difference can be seen between the laboratory 

experimental data and the predicted data but in general the results are agreeable.  
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Figure 8.22: Theoretical plume path line and comparison with experimental data (x is divided 

by the biggest value of LM for Run 6) 

 

8.3.2 Temperature along Plume Path Line 

In the previous section the thermal plume path line below the free surface of the receiving 

water has been discussed. In the following sections the path line profile will be discussed with 

reference to its temperature and velocity characteristics. Equation 7.12b has been formulated 

to predict the temperature along the path line of the thermal plume. The resulting temperature 

is along the path line curvature and as a function of the longitudinal axis x. Figure 8.23 shows 

temperature decay along the path line of the plumes as illustrated in Figure 8.22. Figure 8.24 

illustrates the dimensionless value of temperature decay along the path lines in Figure 8.22. 

The dimensionless Figure 8.24 can be better understood if it is compared to the path lines in 

Figure 8.22. The experimental and theoretical temperatures along the plume path line are 

presented in the Appendix 9. The three experiment runs have the same discharge temperature 

of 25˚C but the dilutions are different, see Figure 8.23. Run 20; see Table 8.2 has the highest 

temperature along its path line whereas its Fd is lower than that in run 18 and bigger than that 

in run 23. The reason is the depth of the discharge pipe in this run is smaller than the other 
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two runs; therefore the plume moves faster in a straight line and dissipates its temperature 

more slowly. Run 23 has a smaller discharge velocity so is moving more slowly through the 

receiving water and losing its temperature faster. Run 18 has the same discharge velocity as 

run 20 but it has got a smaller discharge pipe diameter and bigger depth which reduce the 

flow rate and thus the temperature. 

 

 

Figure 8.23: Theoretical temperature along plume path line and comparison with experimental 

data 

 

Figure 8.24 show how fast the temperature reduced, so the fastest temperature decay is with 

run 23 (Fd 16.29) whilst the lowest temperature dissipation in run 20 (Fd 31.51). 
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Figure 8.24: Theoretical temperature decay along plume path line and comparison with 

experimental data (x is divided by the biggest value of LM for Run 6) 

 

 

8.3.3 Velocity along Plume Path Line 

Figure 8.25 shows the velocity profiles along the path line of the plume as determined by the 

Equation 7.13b and then compared with the data collected from the experiments. The full data 

related to these profiles is presented in the Appendix 10. The discharge velocity is the main 

parameter influencing the velocity profile of the thermal plume. In Figure 8.25 runs 4 

(Fd14.39) and 23 (Fd16.29) have the same discharge velocity 19cm/s and different discharge 

depth and densimetric Froude Number. Therefore the path line velocity for run 23 is relatively 

higher than that in run 4. The runs 18 (Fd38.59) and 20 (Fd31.51) also have same velocity 

whilst run 20 has a velocity along the plume path line that is higher than the velocity in run 

18. The reason is the discharge pipe depth for run 20 is smaller than that in run18. In addition 

the bed has an effect on the thermal plume such that it moves in a straight line as it remains 

attached to the bed and only after a certain distance does it then move towards the surface.  
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This can be clearly seen from the graphs with run 20 extending a further distance than the 

others.   

 

 

Figure 8.25: Theoretical velocity ratio along plume path line and comparison with 

experimental data (x is divided by the biggest value of LM for Run 6) 

 

The profiles presented in the last three sections are complicated as they are affected by more 

than one parameter. To improve understanding and clarity the following section considers 

each profile in turn and discusses the influence of the parameters as listed in Table 8.2.  
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In the last two sections the temperature and velocity along the path line of the plume below 

the surface were discussed. In the current and the following section temperature and velocity 
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the Gaussian profile. Figures 8.26 to 8.30 illustrate the temperature profiles across the thermal 

plume at four different distances (x = 5cm, 10cm, 15cm & 20cm) from the discharge point 

and for different runs with different parameters. The figures are a comparison of theoretical 

and experimental results. The experimental and theoretical data that formed the figures are 

presented in Appendix 9. It is clear from the figures that the predicted data are close to the 

laboratory measured data, however in some cases (runs) that the measured data are bigger 

than the predicted data and vice versa. The reason for that is the turbulent flow which causes 

fluctuation on the frequency of the thermocouple resulting in variation of the temperature. 

Note that the mean temperature is used during all the parts of the current research.Figure 8.31 

shows the temperature profiles for all the five runs at a distance 20cm from the discharge 

point. It is shown from the figure that temperature for run 20 at x =20 is higher than the others 

temperature, whereas the run 23 has the lowest although it has a high discharge temperature. 

That is because the latter has a low densimetric Froude Number. 

 

 

 

Figure 8.26: Theoretical temperature across plume path line and comparison with 

experimental data. Run 4, Fd14.39 
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Figure 8.27: Theoretical temperature across plume path line and comparison with 

experimental data. Run 6, Fd 41.48 

 

 

Figure 8.28: Theoretical temperature across plume path line and comparison with 

experimental data. Run 18, Fd38.59 
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Figure 8.29: Theoretical temperature across plume path line and comparison with 

experimental data. Run 20, Fd 31.51 

 

 

Figure 8.30: Theoretical temperature across plume path line and comparison with 

experimental data. Run 23, Fd 16.29 
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Figure 8.31: Theoretical temperature across plume path line and comparison with 

experimental data. 20cm from the outfall for five different experiments   

 

 

8.3.5 Velocity across Plume Path Line 

There is little doubt that the discharge velocity is the main parameter to influence the general 

path line velocity profile of the plume. The effect of the discharge velocity appears clearly in 

Figures 8.32 to 8.36. These figures demonstrate the velocity profiles across the thermal plume 

path line (plume width) for the theoretical model (Equation 7.15b) and their comparison with 

the experimental measured data. The figures show the velocity along the y axis for three 

different distances (x = 5, x = 10 and at the point when plume reaches the surface) along the 

path line of the plume. Appendix 10 contains tabulated velocities of the measured and 

theoretical data.  

The comparisons of the experimental and predicted velocities in the following figures show a 

good fit. The peak value is on the centreline (path line) of the plume then this value reduced 

with expanding the plume laterally also with moving longitudinal downstream. Figure 8.34 

present the results for the Run 18 at two position of x (5cm & 22.5cm) whilst at x(2.5cm) the 

results not presented because at this distance the plume is too narrow and not expanded 

laterally. 
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Figure 8.32: Theoretical velocity across plume path line and comparison with experimental 

data. Run 4, Fd 14.39 

 

 

 

Figure 8.33: Theoretical velocity across plume path line and comparison with experimental 

data. Run 6, Fd 41.48 
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Figure 8.34: Theoretical velocity across plume path line and comparison with experimental 

data. Run 18, Fd 38.59 

 

 

Figure 8.35: Theoretical velocity across plume path line and comparison with experimental 

data. Run 20, Fd 31.51 
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Figure 8.36: Theoretical velocity across plume path line and comparison with experimental 

data. Run 23, Fd 16.29 

 

 

Figure 8.37: Theoretical velocity across plume path line and comparison with experimental 

data. 10cm from the outfall for five different experiments 

0

2

4

6

8

10

12

14

16

18

-7.5 -5 -2.5 0 2.5 5 7.5

cm
 /

 s

y (cm)

Theoretical velocity (solid lines) across thermal plume and 

comparison with experimental data (symbols). Run 23, Fd 16.29

x 2.5

x 5

x 20

x 2.5

x 5

x 20

0

5

10

15

20

25

30

35

40

-2.5 0 2.5

cm
/s

y (cm)

Theoretical velocity (solid lines) across thermal plume and 

comparison with experimental data (symbols). 5cm from the outfall 

for five different experiments

Run 4

Run 6

Run 18

Run 20

Run 23

Run 4

Run 6

Run 18

Run 20

Run 23



170 
 

Figure 8.37 demonstrates the lateral velocity distribution across the plume path line for the 

five experiments at distance x = 10 cm. The highest velocity profile shown from the figure is 

for run 20 (Fd 31.51) and the lowest profile for the run 4 (Fd 14.39). It worth mentioning that 

run 18 (Fd 38.59) has the same discharge velocity of run 20 and run 23 (Fd 16.29) has the same 

discharge velocity of run 4, whereas they have lower velocity profile. The high velocity 

profiles for the runs 20 and 23 are because their discharge pipes depths are small.   

 

8.3.6 Model Validation - Comparison of the Models against Canal Measured Data  

The following compares all the theoretical equations against the data collected from the 

British Waterways canal site tests. The surface discharge model investigated and tested 

against the Central Services Building CSB site is explained and discussed in Section 8.2 of 

Chapter 8. For the submerged discharge models discussed in the previous sections three 

different canal sites have been selected for comparison with the theoretical results – these 

been discussed earlier in Chapter 3. In all cases the canal site profiles along the plume path 

lines as present in the following figures are dimensionless. The x distance divided by the 

parameter length scale LM, whereas the temperature and velocity are divided by their initial 

discharge values. The graphs shown in Figure 8.38 show the temperature and velocity profiles 

along the plume path line for the Canalside West for the experimental and theoretical studies 

whereas   Figure 8.39 shows the profiles across the path line for a range of distances along the 

plume. The data in these figures is presented in Appendix 11. It is clear from the Figures 8.38 

& 8.39 that the theoretical result represents the actual measured results very closely with 95% 

accuracy for the temperature and 90% for the velocity. The possible difference is because the 

turbulent flow which influence the reading of the thermocouple. In this instance the model is 

verified. 

Figures 8.40 show the comparison of the theoretical results against experimental measured 

data at the Lockside canal site. The temperature and velocity along the path line of plume are 

presented in this figure and again there is a good similarity between the theoretical result and 

the actual –so validating the model again in this example. The temperature and velocity across 

the path line for this site are presented in Figure 8.41. The theoretical and the experimental 

obtained data along and across the plume path line for Lockside are available in Appendix 11. 
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Figure 8.38a: Temperature along path line 

 

 

Figure 8.38b: Velocity along path line 

Figure 8.38: Theoretical temperature and velocity along plume path line and comparison with 

canal measured data (Canalside West) 
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Figure 8.39a: Temperature across path line 

 

 

Figure 8.39b: Velocity across path line 

Figure 8.39: Theoretical temperature and velocity across plume path line and comparison with 

canal measured data (Canalside West) 
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Figure 8.40a: Temperature along path line 

 

 

Figure 8.40b: Velocity along path line 

Figure 8.40: Theoretical temperature and velocity along plume path line and comparison with 

canal measured data (Lockside) 
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Figure 8.41a: Temperature across path line 

 

 

Figure 8.41b: Velocity across path line 

Figure 8.41: Theoretical temperature and velocity across plume path line and comparison with 

canal measured data (Lockside) 
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The survey carried out at the BBC Mailbox canal site was undertaken during a single day. 

The measured data includes the temperature for the mixing zone at three different layers, the 

surface, a layer close to canal bed and the discharge layer, whilst the velocity is measured 

only on the discharge layer. Due to the limited experimental measured velocity along the 

plume path line trajectory for this canal site the theoretical model was applied and compared 

with the plume measured straight centreline velocity. 

Figure 8.42a shows the temperature profiles along the plume path line for the Mailbox site. In 

this instance there is a marginal of difference between the measured data and the prediction 

according to the model. The measured data indicates a lower temperature and velocity but 

then stabilises before falling again at a rate predicted by the model. The reason for this is that 

the plume temperature will be affected by the air ambient temperature after reaches the 

surface of canal. Thus the plume temperature at the surface will be higher than the predicted 

temperature during the hotter weather. This can be corrected by undertaking more climatically 

variable on-site recordings. To undertake this effectively it would be necessary to install a 

continuous measuring system on a variable range of sites. Figure 8.42b show the temperature 

across the plume path line. 

 

 

 

Figure 8.42a: Temperature along path line 
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Figure 8.42b: Temperature across path line 

Figure 8.42: Theoretical temperature along and across plume path line and comparison with 

canal measured data (Mailbox) 

 

 

Figure 8.43a: Theoretical velocity along plume path line and comparison with plume straight 

centreline measured velocity. 
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Figure 8.43b: Theoretical velocity across plume path line and comparison with plume straight 

centreline measured velocity. 

Figure 8.43: Theoretical velocity along and across plume (Mailbox) 
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Figure 8.43b show the velocity profiles across the plume. Again the figure is a comparison of 

the theoretical model data against the canal measured data. The experimental measured data 

along with the theoretical obtained data of the Mailbox site are tabulated in Appendix 11. 
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and the associated mathematical models. The three dimensional model derived to determine 
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the size of plume involves a number of equations; therefore the compilation of them to 

present the 3D image required a computer program to perform that task, in this case  

MATLAB was used. From the model the size of plume below the free surface of the receiving 

water can be determined. Its able to produce the isometric view of the plume as well as the 

plan and side view. The parameters involved in the model are the densimetric Froude 

Number, depth of the receiving water and the depth of the discharge pipe. 

In the following figures the experimental results for the five runs discussed earlier and the 

canal sites examined will be presented. Figures 8.44 – 8.48 show the isometric 3D view for 

the laboratory experimental results for all the five runs. 

 

 

 

Figure 8.44: Size of thermal plume for experimental run 4, Fd14.39 
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Figure 8.45: Size of thermal plume for experimental run 6, Fd41.48 

 

 

Figure 8.46: Size of thermal plume for experimental run 18, Fd38.59 
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Figure 8.47: Size of thermal plume for experimental run 20, Fd31.51 

 

 

Figure 8.48: Size of thermal plume for experimental run 23, Fd16.29 



 

Figures 8.49 – 8.51 illustrate the plan and sectional view of the thermal plume below the 

surface for the canal sites, starting with the Canalside West, Lockside and Mai

the figures more understandable the embankment wall and a section of discharge pipe are 

added to the right hand side of the figures

referenced figures) and the top flat part in the sectional views (

the free surface of canal. It must be mentioned that the discharge pipe is located at the right 

hand side of the figures; and although the outlet size in the z and y directions may appear 

slightly different they are the same at x=0

(“a” Figures) is that the plume gets wider very quickly when only  a small distance from the 

outfall. The effect is different to that of an orifice which has a reduced diameter and is caused 

by fluid attachment to the pipe outlet rim. Because this is an 

observation, the model does not 

in the sectional view where the plume within that small distance is not modelled

distance that the plume is not modelled

8.51. This distance will be less than that for smaller discharge pipe as in the Canalside West 

and Lockside sites, Figures 8.49 and 8.50.

of the main plume profile. Figure 8.51c show the isometric view of the plume for the Mailbox 

site. 

181 

8.51 illustrate the plan and sectional view of the thermal plume below the 

surface for the canal sites, starting with the Canalside West, Lockside and Mai

the figures more understandable the embankment wall and a section of discharge pipe are 

hand side of the figures. The elliptical form in plan views (

) and the top flat part in the sectional views (the “b” referenced 

It must be mentioned that the discharge pipe is located at the right 

and although the outlet size in the z and y directions may appear 

slightly different they are the same at x=0. The reason for that in the plan view as shown in 

is that the plume gets wider very quickly when only  a small distance from the 

outfall. The effect is different to that of an orifice which has a reduced diameter and is caused 

by fluid attachment to the pipe outlet rim. Because this is an unknown and mai

observation, the model does not show the plume within that small distance. The same occurs 

in the sectional view where the plume within that small distance is not modelled

not modelled is approximately 5cm for the Mailbox site, see Figure 

will be less than that for smaller discharge pipe as in the Canalside West 

and Lockside sites, Figures 8.49 and 8.50. It is not felt this omission is relevant to the results 

Figure 8.51c show the isometric view of the plume for the Mailbox 

Figure 8.49a: Plan view 

8.51 illustrate the plan and sectional view of the thermal plume below the 

surface for the canal sites, starting with the Canalside West, Lockside and Mailbox. To make 

the figures more understandable the embankment wall and a section of discharge pipe are 

The elliptical form in plan views (the “a” 

referenced figures) is 

It must be mentioned that the discharge pipe is located at the right 

and although the outlet size in the z and y directions may appear 

The reason for that in the plan view as shown in 

is that the plume gets wider very quickly when only  a small distance from the 

outfall. The effect is different to that of an orifice which has a reduced diameter and is caused 

and mainly irrelevant 

the plume within that small distance. The same occurs 

in the sectional view where the plume within that small distance is not modelled. The small 

cm for the Mailbox site, see Figure 

will be less than that for smaller discharge pipe as in the Canalside West 

It is not felt this omission is relevant to the results 

Figure 8.51c show the isometric view of the plume for the Mailbox 

 



 

Figure 8.49: Plan and sectional view of thermal plume below the surface at Canalside West 

182 

Figure 8.49b: Sectional view 

Figure 8.49: Plan and sectional view of thermal plume below the surface at Canalside West 

 

Figure 8.50a: Plan view 

 

Figure 8.49: Plan and sectional view of thermal plume below the surface at Canalside West  

 



 

Figure 8.50: Plan and sectional view of thermal plume below the surface at 
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Figure 8.50b: Sectional view 

: Plan and sectional view of thermal plume below the surface at 

 

Figure 8.51a: Plan view                                 

 

: Plan and sectional view of thermal plume below the surface at Lockside  

 

Figure 8.51a: Plan view                                  
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   Figure 8.51b: Sectional view 

 

Figure 8.51c: Isometric view 

Figure 8.51: Plan, sectional and isometric view of thermal plume below the surface at 

Mailbox site 
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9. Summary and Conclusions  

9.1 Overview 

The discussions regarding global warming are ongoing but the need for more energy needs is 

not in doubt as the World population expands. In addition the use of existing energy must be 

used more efficiently and as necessary every advantage needs to be taken to reduce such 

demands for energy. This research attempts to allow the current process of using canal water 

for cooling to be used more extensively but still not harm the environment or the eco-balance 

of the canal system.  It concentrates on a study of the thermal plume from heated condensers 

of a cooling system and then discharged into a body of still water.  The British Waterways 

canal system is one of the sources of water cooling that has the potential to be exploited; its 

water currently being used to cool buildings adjacent to the canal. Water is normally 

abstracted from the canal, pumped to the condensers where it absorbs heat and is then 

returned back to the canal where the heat is dissipated into the body water without affecting 

aquatic life. This process necessitates the prediction of induced heat diffusion in the receiving 

water if environmental regulations are not to be infringed. Because the thermal discharge may 

increase the bulk temperature of the canal water then the recirculation of water back to the 

intake may also be heated. In addition it is known that an excessive rise of the canal ambient 

temperature can directly affect the chemical and physical properties of the canal water. This 

effect can be a reduction of the water’s ability to dissolve oxygen and so jeopardise the 

aquatic life. Because of the know effects and Environment Agency regulations the 

temperature distribution in the receiving water must be predicted in order to satisfy such 

criteria. This research presents a novel and holistic technique for investigating warm water 

discharge into a body of still and shallow receiving water. It uses thermal imaging, on-site 

testing, scale modelling tank using dyed heated water, computational and mathematical 

modelling in the studies of thermal discharge and heat diffusion profile prediction. The 

technique makes use of a thermal camera to observe the heat distribution on the surface of 

receiving water and the extent of the mixing zone and as such the heated areas can be clearly 

identified by analysing the thermal images. Mathematical model have been developed to 

predict temperature distribution of thermal surface discharge into canal and variable values of 

turbulent diffusivity have been used. The effects of heat turbulent diffusivity on the width of 

plume has been identified – that is a larger plume is observed for high diffusivity discharge. 

Mathematical models have been derived to predict the behaviour of thermal submerged and 

surface discharges into a canal, these models including detail such as plume path line, 
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temperature and velocity along and across the path line and the size of plume and depth 

characteristics. In all cases the theoretical results compare very favourably with the site and 

laboratory results. Of interest is the dependence of the thermal plume temperature distribution 

within the canal on the discharge temperature, discharge velocity, discharge pipe diameter and 

its discharge depth and the depth of the receiving water. 

 

9.2 Summary 

Most of thermal discharge studies predicted to date cover the cases of thermal plume 

discharge into large body of deep water such as seas and oceans or discharge into shallow 

rivers. Such studies have been applied to estimate the temperature distribution in a deep still 

or shallow flowing receiving water but these have been of a one dimensional nature. They 

were over conservative in their predictions and as such have rejected what were considered by 

British Waterways to be viable proposals. The models were not suitable to meet the needs of 

energy reduction. In the current study an experimental and analytical investigation of heat 

diffusion of thermal plume discharge into still and shallow receiving water has been carried 

out. Thermal plume discharge into surface and submerged discharge are described. 

Laboratory model tank and on-site field trial experiments were used in the experimental 

investigations. For surface discharge experiments carried out in one canal site and simulated 

in a laboratory model tank, whereas the submerged discharge performed at three different 

canal sites and laboratory. For surface discharge temperature and velocity measured along the 

centreline of plume, whilst in submerged discharge the measurements carried out along the 

path line of plume. In addition the temperature and velocity profiles across the plume are 

measured.  

In the case of submerged discharge the size of plume and the plume path line are determined 

by using two discharge pipe diameters, five discharge temperature, three discharge velocity 

and three different depths for discharge pipe and receiving water. Also the heated water dyed 

before discharge into the model tank. Thermal camera technology is used to measure the 

temperature distribution on the surface of mixing zone. 

Analytical work has been carried out by using computational CFD package and by producing 

mathematical equations. FLUENT software is used to determine the temperature and velocity 

distribution within the mixing zone at different layers and along the centreline of the plume 

for both surface and submerged discharge. A mathematical model based on heat diffusion 
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equation has been developed to predict temperature distribution of the thermal plume 

discharge into and to the surface of the receiving water. The temperature profile determined 

by the equation is for the discharge layer just below the surface of receiving water. Turbulent 

diffusivity dividing by discharge velocity is the main parameter involved in the equation. 

For submerged discharge equations have been derived from the empirical data to determine 

the path line of plume when it is deflecting to the surface, temperature and velocity along and 

across the path line. All the affected parameters such as length scale, densimetric Froude 

Number, depth of discharge pipe and receiving water are represented in the equations. The 

number of equations developed was brought together within MATLAB software to produce a 

three-dimensional model to predict the size of thermal plume below the free surface of the 

receiving water. In all cases the mathematical models have been compared and validated with 

the experimental measured data. 

 

9.3 Concluding Remarks 

The developed model has been accepted for use by British Waterways and is currently being 

reviewed by the Environment Agency. It has been applied locally to evaluate a new college 

build programme and the results have been accepted by the build energy consultants. 

It is considered that the general principles used during the study gives an insight into the 

behaviour of the discharge of warm water into still and shallow receiving canals and the 

temperature dispersal throughout the plume and may be used to predict future proposals to use 

canals for cooling purposes.  

Experiments 

The area of the discharge plume and temperature distribution within the surface of the plume 

can be clearly defined by the use of the thermal camera. It must be noted that the thermal 

distribution throughout the depth cannot be obtained using the thermal image camera 

technique because of the surface reflectivity and its inability to differentiate between 

distances. The temperature dispersal indicated by the thermal images is corroborated by the 

temperatures measured within the area of the grid that is around the visible turbulent 

discharge plume.  

Submerged discharge would achieve a greater temperature loss within the submerged plume 

with the residual heat dissipating across the surface, creating a larger area in which final 
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balance temperature is achieved. This would leave a sub-surface volume for fishlife to bypass 

the plume. 

The three sites at the University of Huddersfield and BBC Mailbox site all comply with the 

necessary requirements of British Waterways and the Environment Agency in that the 

maximum temperatures recorded were within stated acceptable limits. 

The geometry of the layout of the sites used for the study varies considerably, impacting on 

the behaviour of the discharge and temperature dispersal. The aquatic plant growth around the 

mixing zone in the surface discharge can have an effect on the thermal dispersal by restricting 

free flow of the discharge plume. There was no evidence of aquatic plant growth within the 

other three submerged discharge sites that may have affected the results. 

Using the discharge temperature measurement as recorded within the plant room gives an 

overestimation of actual discharge temperature to the canal as there is a significant cooling 

effect from the underground pipes leading back to the canal. There is some heat loss taking 

place between plant room, pump house, embankment and the discharge point.  

From the field trials and laboratory experiments it can be said that the peak discharge 

temperature of the plume does not extend below the pipe therefore the maximum temperature 

need only be considered within the local plume area. In a surface discharge design the heat is 

being dissipated over a larger surface area which does not constitute a threat to fishlife, 

whereas in a submerged discharge design the majority of heat dissipates within the body of 

the canal water.  

The discharge plume dissipates the maximum heat loss within a plume size of 1m long x 

400mm wide whilst the area of the maximum mixing zone required to achieve full 

temperature balance is depended on the involved parameters as specified in the equations.  

At the CSB site the relative positioning of the inlet some 4.5m downstream from the 

discharge pipe outlet does not cause any recirculation problems.  Any increase in inlet 

temperature is more influenced by the effect on flow created by the proximity of the 

embankment to the inlet, the weed growth and the timber posts that were close to the inlet in 

this case. Within a distance of 4.0m from the discharge point a temperature balance is 

achieved throughout the canal depth on the centreline of discharge. 

The Canalside West less effects on the canal environment is minimal as the temperature 

balance is achieved within a short distance from the discharge point. At the Lockside site 
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adequate space is available for fishlife allowing them plenty of room to keep away. The 

surface temperature of the mixing zone at the Mailbox is relatively constant. 

The temperature distribution obtained by thermocouple measurements appears to corroborate 

the temperature distribution of the discharge plume obtained using the thermal imaging 

camera. 

 

Theoretical 

The presented theoretical models have been shown to closely represent a number of varied 

real systems. As such it is felt they are applicable for most standard systems that may be 

required to be evaluated by British Waterways. Indeed it is felt they are applicable for 

application towards any heated water discharge into a still water environment.   

In submerged discharge the proximity of the discharge pipe to the bed z0/LM and to free surface 

(H – z0)/LM has considerable effects on the flow pattern, see Figure 9.1. Whereas the length 

scale, temperature difference and discharge velocity have a significant influences on the 

plume profiles. 

  

Figure 9.1: Flow pattern regimes 

In deep submerged discharge the plume horizontal flow increased and there will be a 

deflection towards the bed, then the buoyancy is prevailed and the plume rises to free surface. 

(H–z0)/LM 

z0/LM 

Deep 

submerged 

Shallow submerged 
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In shallow discharge the entrainment is reduced between the surface and discharge pipe, 

therefore the deflection of plume towards the surface will be faster. The dilution along the 

path line of plume in shallow submerged discharge grows less rapidly than that in deep 

submerged discharge. In general the bed parameter has limited effects on the dilution along 

the path line of plume as well as on the lateral diffusion. 

 

The following is a summary of major results and conclusions 

• Equations developed to predict the path line of thermal submerged plume, the 

temperature and the velocity along and across the path line. 

• 3-D model of the size of the thermal submerged plume below the surface developed 

• 2-D model developed to predict the temperature profile for surface thermal plume 

• The equations have been validated against all measured data for all sites with accuracy 

95% for temperature and 90% for velocity.  

• The beneficial effects of surface and submerged discharge have been investigated and 

it has been show that submerged discharge has a better effect regarding heat 

dissipation. 

• Regarding the position of the inlet and outlet pipe it is recommended that the inlet 

should be located outside the mixing zone. 

• For high flow rates, high velocities and high temperature discharges into a still water 

environment it is better that the direction of discharge should be longitudinal along the 

length of the canal (in the case of a canal site) and not across the canal. In addition it is 

recommended that the withdrawal (inlet) pipe be positioned the opposite direction to 

the discharge line. 

• An appropriate value for turbulent diffusivity into a still water environment canal has 

been derived and confirmed. 

• Three-dimensional temperature and velocity profiles have been created using 

FLUENT CFD modelling software. 

• Considering the variations in the effect of surface and submerged discharge regarding 

discharge velocity, discharge temperature, pipe diameter, determine length and profile 

of plume and temperature gradient; is has been shown that the surface discharge plume 
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will be longer than the submerged discharge plume which will be wider when they 

have the same initial parameters. 

• Regarding the effect of the relative position and depth of inlet/outlet pipes and cross 

sectional shape of the canal on recirculation; for 7ºC temperature difference and 4.5m 

between both pipes then no recirculation occurred. 

• The flow pattern, discharge plume size and temperature gradients through the 

discharge plume are determined by considering the effects of various length scales and 

depth of receiving water. 

   

9.4 Future Work 

The author is planning to expand the current work to consider the total energy balance of the 

discharged warm water into any body of still water. 

In the current study the heat diffusion of thermal discharge into British Waterways canal is 

investigated. It is shown the size of plume and the length that plume reach to achieve 

temperature balance. The study does not discuss the way that heat dissipates and where the 

heat loss goes. There is a need to consider surface water evaporation that can be 1mm per day, 

heat lost to the canal floor, heat loss to backing and heat loss during underground pipe flows. 

It is therefore necessary to know the proportion of heat dissipation to all sections and the 

temperature balance achieved to avoid any potential environmental impact. Based on the 

theory of (the heat gain = heat loss + losses) the author could produce a model to predict the 

energy balance in any still water environment. 

It is also necessary to analyse the variation in the building loads and canal temperatures and 

the impact that these variables have on changing plume patterns throughout an operating 

summer cooling season.   
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Appendices 

APPENDIX 1: MEASUREMENTS PROCEDURE 

 

Site 1: Canal basin – wharf 

Site 2: Canal Side West 

Site 3: Lock side 

 

Re: Onsite data collection 

 

Site 1: Canal basin – wharf 

 

Agree time/date of data collection with Adrian Lee, 

All readings to be taken on same day. 

Ensure pump set to manual over ride for duration of trial, 

Ensure no lockage occurs within 2 hours of data collection, 

If lockage occurs during trial, abort, wait 2 hours and restart trial, 

 

Start of trial - Data collection: 

Record date and time of start of trial, may be better to record time individual 

readings/photographs are taken. 

 

Lock 1E: 

Photograph gate leakage, 

Photograph weir to record flow, if any, 

 Measure flow over weir 

 Measure breadth of weir 

 Measure gate leakage – time to fill bucket 

 

Wharf: 

 Set-up suitable 2D matrix, 

 Relate matrix to footbridge for datum for temperature measurement, 

 Measure wind speed, record direction, 

 Ambient air temp, in shade, 
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 Measure depth of water 

 Measure depth to top of inlet pipe 

 Measure/photograph height of outlet pipe/water surface 

 Use thermocouple to measure canal ambient water temperature, record in two 

 positions, record position used, 

 Record water temp adjacent to inlet, 

 Thermal image of flow 

 Photograph flow – digital camera 

 

Goyte: 

 Photograph flow into canal 

 

Pump house: 

At start of trial: 

 Record inlet temperature of all pumps using:- 

  Pump house gauges 

  Laser sensor  

 Record outlet temperature of all pumps using:- 

  Pump house gauges 

  Laser sensor  

 Record pump flow rate of all pumps 

 Record/calculate heat load/demand 

 

Wharf: 

Use thermo-couple: 

 Record AIR temperature over 2D matrix, 25mm above canal water surface, 

 Record WATER temperature over 3D matrix, depth of matrix to be advised, 

 Record VELOCITY  thro’ plume???HOW-read display from bank??? 

 

At end of trial 

Record time at end of trial 

 Recheck initial AIR temperature reading only 

 Recheck initial WATER temperature reading only 
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 Recheck initial FLOW rate reading only 

 Recheck canal ambient WATER temperature 

 Re-measure wind speed/direction 

 

Pump house: 

 Recheck pump flow rate 

 Reset pumps back to auto-cycle 

 

Lock 1E 

Re-photograph Lock 1E leakage 

Measure flow over weir 

Measure gate leakage 

 

Equipment required: 

Thermal image camera 

Digital camera 

15m tape measure 

Water flow meter 

Anemometer – wind speed 

Thermocouple – air 

Thermocouple – water 

Laser temperature instrument 

Bucket and stop watch 

15m rope 

Ball of string 

Tent pegs (2) 

Chalk 

Roll insulating/duck tape 

Cable ties 

Surveyor’s staff/fishing rod???? 

Staff – water depth 

Dinghy, 

Lifebelts (2) 
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Site 1: Canal basin – wharf 

 

Date of Trial:  

 

 

Time readings taken:    

 

 

Lock 1E: 

 

Lock Gate: 

 

Photograph leakage rate:   tick 

 

 

 

 

L.H./R.H. – Upstream gate looking up stream 

 

Comments: 

 

Weir: 

 

Photograph weir:      tick 

 

Measure breadth of weir:     mm 

 

Measure depth of flow over weir:    mm 

OR 

Measure height from weir to water level:   mm 

 

Comments: 

Leakage Bucket capacity Fill time (sec.) Time of day 

L.H.side    

R.H.side    
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Date of Trial:  

 

 

Wharf: 

 

Time readings taken:  

 

Thermal image:    tick 

 

Digital photograph of flow:    tick   

 

 

Measure wind speed:    m/s 

Direction: 

 

Ambient air temp t1:    oC  

Ambient air temp t2:    oC  

 

Ambient canal WATER temperature: 

Ambient canal WATER temperature: 

 

N.B. 

Mark on map/diagram position used for measurements 

 

Inlet: 

Ambient INLET WATER temperature: 

Height below 

surface (mm) 

Inlet water temp: 

oC 
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Depth of water to TOP OF INLET pipe:      mm 

 

 

Depth of water to Adjacent to pipe:       mm       mm 

 

Goyte: 

 

Digital photograph of flow:    tick   
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Date of Trial:  

 

Time readings taken:   

 

Wharf: 

Measured canal AIR temperature: 

 Y16          

 Y15          

 Y14          

 Y13          

 Y12          

 Y11          

 Y10          

 Y9          

 Y8          

 Y7          

 Y6          

 Y5          

 Y4          

 Y3          

 Y2          

 Y1          

 Y0          

Distance from 

outlet    (m) 

-x4 -x3 -x2 -x1 xo +x1 +x2 +x3 +x4 

          

Distance from centre of pipe (mm) 

        Pipe 

       Outlet 

 

Temperatures measured 25-50mm above canal surface. 
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Date of Trial:  

 

Time readings taken:   

 

Wharf: 

Measured canal WATER temperature: 

 Y16          

 Y15          

 Y14          

 Y13          

 Y12          

 Y11          

 Y10          

 Y9          

 Y8          

 Y7          

 Y6          

 Y5          

 Y4          

 Y3          

 Y2          

 Y1          

 Y0          

Distance from 

outlet    (m) 

-x4 -x3 -x2 -x1 xo +x1 +x2 +x3 +x4 

          

Distance from centre of pipe (mm) 

        Pipe 

       Outlet 

 

Temperatures measured    mm below canal surface. 

 

Depth of water to TOP OF OUTLET pipe at point of discharge:         mm 
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Date of Trial:  

 

Time readings taken:   

 

Wharf: 

Measured canal VELOCITY (  )units 

 Y16          

 Y15          

 Y14          

 Y13          

 Y12          

 Y11          

 Y10          

 Y9          

 Y8          

 Y7          

 Y6          

 Y5          

 Y4          

 Y3          

 Y2          

 Y1          

 Y0          

Distance from 

outlet    (m) 

-x4 -x3 -x2 -x1 xo +x1 +x2 +x3 +x4 

          

Distance from centre of pipe (mm) 

        Pipe 

       Outlet 

 

Flow rate: measured       mm below canal surface. 
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Date of Trial:  

 

Time readings taken:   

 

Wharf Pump House: 

Pump Inlet 

temp. 

Gauge 

Inlet 

temp. 

Laser 

Outlet 

temp. 

Gauge 

Outlet 

temp 

Laser 

Measured 

Flow rate 

Flow 

rate 

units 

Time of 

reading 

Rated 

Pump 

flow 

rate –

name 

plate 

Pump 1 

 

        

Pump 2 

 

        

Pump 3 

 

        

 

 

 

 

END OF TRIAL: 

 

Time readings taken:   

 

Recheck initial AMBIENT AIR temperature reading:  

 

Recheck initial WATER temperature reading: 

 

Recheck initial FLOW rate reading 

 

Recheck initial canal WATER temperature reading: 
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Re-measure wind speed/direction: 

 

Recheck pump flow rate: 

 

Reset pumps back to auto-cycle 

 

Date of Trial:  

 

 

Time readings taken:   

 

 

 

Re-photograph Lock 1E leakage rate: 

 

Re-measure flow over weir: 

 

Re-measure gate leakage: 
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APPENDIX 2: EQUIPMENT USED 

 

 

Equipment used throughout the data collection:- 

 

1. Thermal image camera: 

 

 

Thermal Camera 

 

 

FLIR Systems S60 thermal imaging camera 

 

Thermal camera setup: 

 

Field of view/min focus distance  24° x 18° / 0.3 m 

Spatial resolution (IFOV)   1.3 mrad 

Image frequency    50 Hz 

Thermal sensitivity @ 50/60Hz  0.06 °C at 30 °C 

Electronic zoom function  2,4,8, interpolating 

Focus      Automatic or manual 

Digital image enhancement  Normal and enhanced 

Detector type     Focal plane array (FPA) uncooled microbolometer 

320 x 240 pixels 

Spectral range    7.5 to 13 µm      
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Built-in digital video   640 x 480 pixels, full color 

 

Temperature ranges   -40°C to +120°C (-40°F to +248°F), Range 1 

0°C to +500 °C (+32°F to 932°F), Range 2 

+350 °C to +1500 °C (+662 to +2732°F), Range 3 

 

Accuracy (% of reading)   ± 2 °C or ± 2% 

 

Measurement modes    Spot/manual (up to 10 movable), Spot/automatic 

placement at max, min, Area (up to 5 movable), 

isotherm (2), line profile, 

Delta T 

 

Emissivity correction    Variable from 0.1 to 1.0 or select from listings in 

pre- 

defined material list 

 

Measurement features    Automatic corrections based on user input 

for  

reflected ambient temperature, distance, relative  

humidity, atmospheric transmission, and external  

optics. 

Optics transmission correction   Automatic, based on signals from internal 

sensors 

 

 

General data used for test: 

Ambient air temperature   17-17.5°C 

Relative Humidity   50% (estimated) 

Water emissivity   0.96 

Viewing distance   3.8m (vertical) 
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2. Thermocouples  

i) ‘K’ type thermocouple with 5m lead for water temperature  

 ii) ‘K’ type thermocouple with 5m lead for air temperature. 

 

 

Digital Thermocouples Meter 

 

 

3. Flow meter 

 

 

Turbine Flow Meter 
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Equipment Calibration: 

Various methods of equipment calibration were considered as follows: 

 

Thermocouples 

 Use boiling water, i.e. 100 degree Celsius, 

a) Use crushed ice, i.e. 0 degree Celsius, 

b) Compare meter readings using two thermocouples and laboratory/calibrated meter. 

c) Compare at 38 degree C against medical thermometer. 

The method selected was to compare readings of existing laboratory thermocouple meter with 

that used for the site measurements.  

 

Thermal Image 

The thermocouples were as a comparator for the thermal image. 

Use boiling water, compare thermocouple with thermal image. 

Use crushed ice, i.e. 0 degree Celsius, compare thermocouple with thermal image.  

 

 

Flow Meter 

No calibration of flow meter was undertaken. 
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APPENDIX 3: PRELIMINARY CASE STUDY 
 
 

Preliminary Field Measured Data (Temperature, Velocity and Depth) 
 
 
 
 
 
 
 
 

Central Services Building – CSB 
 
 
 

50mm below surface 

Breadth       Temperature ºC           

  5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

1m 17.5 17.7 18.3 18.3 18.2 18.1 17.4 17.5 18.5 18.0 18.0 

0.8m 17.6 17.8 18.4 18.4 18.2 18.1 17.6 17.7 18.6 18.0 18.1 

0.6m 17.7 17.8 18.4 18.4 18.3 18.3 17.8 17.9 18.6 18.1 18.1 

0.4m 17.7 17.6 18.4 18.5 18.3 18.7 18.3 18.8 19.1 18.2 18.1 

0.2m 18.0 18.1 18.5 18.5 18.9 18.8 18.6 19.2 19.1 18.4 18.1 

0m 18.0 184 18.6 18.7 19.0 19.1 19.2 19.8 20.5 21.2 24 

-0.2m 18.0 18.4 18.1 19.1 19.0 18.7 19.2 19.9 19.6 20.0 18.4 

-0.4m 17.8 18.6 18.1 19.0 18.9 18.6 19.2 18.8 18.6 18.9 18.4 

-0.6m 17.9 18.7 18.2 18.8 18.6 18.6 19.2 18.7 18.5 18.8 18.4 

-0.8m 17.9 19.0 18.4 18.8 18.6 18.5 19.1 18.8 18.5 18.5 18.4 

-1m 18.0 19.3 19.0 18.7 18.6 18.7 19.1 18.8 18.5 18.5 18.4 

            

            

            

Mid-depth 

Breadth       Temperature ºC           

  5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

1 18.0 18.1 17.5 17.3 17.7 18.2 18.0 18.0 17.7 18.1 17.7 

0.8 18.0 18.3 17.6 17.4 17.8 18.3 18.1 18.0 17.7 18.2 17.7 

0.6 17.6 17.6 17.6 17.5 17.5 17.4 18.1 18.2 17.6 18.2 17.8 

0.4 17.8 17.6 17.7 17.4 17.3 17.3 17.8 18.2 17.7 18.2 17.6 

0.2 17.5 18.3 17.8 17.5 17.3 17.3 17.5 17.8 17.7 18.2 17.6 

0.0 18.0 18.2 17.9 17.4 17.4 17.5 17.6 17.8 18.2 18.3 17.9 

-0.2 18.3 18.3 18.5 18.7 17.4 17.3 17.7 17.8 18.3 18.3 18.0 

-0.4 18.9 18.9 18.5 18.9 18.7 19.0 18.8 17.8 18.3 18.3 18.0 

-0.6 18.9 18.9 18.8 18.9 19.0 19.0 18.8 17.9 18.4 18.2 18.1 

-0.8 19.4 19.0 18.9 19.2 19.2 18.9 18.7 18.3 18.4 18.3 18.1 

-1.0 19.5 19.0 19.1 19.2 19.2 18.9 18.6 18.5 18.4 18.3 18.1 
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50mm above bed 

Breadth       Temperature ºC           

  5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

1 17.6 17.8 17.7 17.5 17.4 17.4 17.4 17.6 17.3 17.5 17.5 

0.8 17.6 17.8 17.7 17.5 17.4 17.4 17.4 17.6 17.3 17.5 17.5 

0.6 17.9 17.6 17.7 17.4 17.4 17.2 17.4 17.4 17.4 17.5 17.5 

0.4 17.9 17.6 17.7 17.4 17.4 17.2 17.4 17.4 17.4 17.5 17.4 

0.2 17.9 17.6 17.7 17.5 17.5 17.3 17.4 17.3 17.5 17.6 17.4 

0.0 18.1 17.9 18.2 17.5 17.9 17.4 17.6 17.4 17.7 18.2 17.5 

-0.2 18.7 17.9 19.1 17.5 18.1 17.5 17.7 17.4 18.0 18.2 17.5 

-0.4 19.3 17.8 19.1 17.8 19.0 17.4 17.8 17.5 18.1 18.3 17.6 

-0.6 19.3 17.8 19.2 18.4 19.1 17.4 18.0 17.5 18.1 18.3 17.7 

-0.8 19.4 19.3 19.2 19.2 19.1 17.5 18.7 17.6 18.2 18.3 18.0 

-1.0 19.3 19.3 19.3 19.2 19.1 17.5 18.7 18.5 18.2 18.2 18.2 

            

Canalside West Temperature 

 CSW - Temperature          

    50mm below surface     

 Distance along 

plume 

   Temperature ºC     

 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00  

 2.50 17.6    17.6    17.5  

 2.00 17.6 17.6 17.6 17.6 17.7 17.5 17.5 17.5 17.5  

 1.50 17.6 17.6 17.7 17.7 18.0 17.6 17.6 17.5 17.5  

 1.00 17.7 17.7 17.8 17.8 18.1 17.5 17.7 17.6 17.6  

 0.50 17.7 17.7 17.8 17.8 17.9 17.7 17.7 17.6 17.6  

 0.00 18.0 18.0 18.1 18.1 18.1 18.1 18.1 18.0 18.0  

            

    Mid-depth       

 Distance along 

plume 

   Temperature ºC     

 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00  

 2.50 17.6    17.6    17.6  

 2.00 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7  

 1.50 17.7 17.8 17.8 17.8 17.8 17.8 17.8 17.7 17.7  

 1.00 17.7 17.7 17.8 17.9 17.9 17.9 17.8 17.7 17.7  

 0.50 17.7 17.8 17.8 18.0 18.0 18.0 17.8 17.8 17.6  

 0.00 17.6 17.6 17.6 17.9 18.6 17.9 17.6 17.6 17.6  

            

    50mm above bed      

 Distance along 

plume 

   Temperature ºC     

 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00  

 2.50 18.0    17.6    17.7  

 2.00 17.6 17.6 17.6 17.7 17.7 17.7 17.6 17.6 17.6  

 1.50 17.6 17.6 17.6 17.7 17.7 17.7 17.6 17.6 17.6  

 1.00 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6  

 0.50 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6  

 0.00 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6  
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Lockside - Temperature  

 

Temperature ºC - 50mm below surface 

Distance along 

Plume (m) 

Distance across plume (m) 

-1.00 -0.50 0.00 0.50 1.00 

2.00 19.0 19.0 19.0 19.0 19.0 

1.50 18.8 19.6 19.9 19.6 18.9 

1.00 19.0 19.6 20.0 19.8 19.0 

0.50 19.3 20.1 22.5 21.0 20 

0.00 19.2 21.0 21.7 21 20.7 

      

Temperature ºC - mid-depth 

Distance along 

Plume (m) 

Distance across plume (m) 

-1.00 -0.50 0.00 0.50 1.00 

2.00 18.9 18.8 18.8 18.9 18.9 

1.50 18.9 18.9 19 18.9 18.8 

1.00 18.9 18.9 19.6 19.0 18.8 

0.50 18.9 18.9 20.6 19.1 18.6 

0.00 18.9 19.0 24 19.2 18.6 

      

Temperature ºC - 50mm above bed 

Distance along 

Plume (m) 

Distance across plume (m) 

-1.00 -0.50 0.00 0.50 1.00 

2.00 18.1 18.6 18.6 18.8 18.5 

1.50 18.1 18.4 18.7 18.5 18.5 

1.00 18.3 18.3 18.5 18.4 18.4 

0.50 18.3 18.3 18.4 18.4 18.3 

0.00 18.3 18.3 18.3 18.4 18.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



214 
 

CSB – Velocity 

Canal Flow - at grid points 

Coordinate   Velocity (m/s)     

  4.0 3.0 2.0 1.0 0.0 

0.4 0.136 0.253 0.172 0.124 0.000 

0.2 0.268 0.339 0.368 0.279 0.000 

0.0 0.263 0.391 0.669 0.931 1.229 

-0.2 0.358 0.391 0.602 0.201 0.000 

-0.4 0.100 0.368 0.314 0.120 0.000 

 

 

Canalside West – Velocity 

Flow measured 50mm below surface  

Canal   Flow rate (m/s)   

Width Distance From Dishcarge Pipe (m) 

(m) -1.00 -0.50 0.00 0.50 1.00 

2.50           

2.00 0.050    0.31    0.050  

1.50           

1.00 0.100   0.49   0.100 

0.50           

0.00 0.000   0.08   0.000 

 

 

Lockside – Velocity 

50mm below surface 

Canal     Flow Rate m/s   

Width 
Distance From Discharge Pipe (m) 

  
(m) -1.00 -0.50 0.00 0.50 1.00 

2.00 0.0   0.31   0.0 

1.50           

1.00 0.0   0.62   0.0 

0.50           

0.00 0.0   0.1   0.0 
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CSB – Depth 

      Canal depth at grid points (m)         

Width 
  
  

(m) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

0.8 1.05 1.13 1.03 1.15 1.04 1.09 1.13 1.15 1.13 1.10 1.10 

0.6 0.86 1.03 1.08 0.94 0.98 1.05 1.02 1.05 1.00 1.00 1.08 

0.4 0.84 1.00 0.95 0.88 0.81 0.94 1.01 1.00 1.01 1.03 1.04 

0.2 0.76 0.75 0.75 0.88 0.88 0.98 0.95 0.95 1.01 0.95 0.90 

0.0 0.76 0.65 0.79 0.86 0.89 0.90 0.82 0.98 0.93 0.95 0.90 

-0.2 0.82 0.75 0.91 0.80 0.73 0.80 0.80 0.90 0.85 0.85 0.85 

-0.4 0.74 0.98 0.83 0.76 0.67 0.68 0.74 0.79 0.82 0.90 0.78 

-0.6 0.74 0.98 0.80 0.75 0.60 0.77 0.76 0.75 0.75 0.79 0.76 

-0.8 0.75 0.5inle
t 

0.64 0.60 0.65 0.76 0.74 0.70 0.76 0.75 

-1.0 0.75 0.61 0.56 0.70 0.75 0.75 0.75 0.76 0.75 

 

 

Canalside West – Depth 

Depth m 
  

Coordinate -1.00 -0.50 0.00 0.50 1.00 

2.50 1.10 1.20 1.23 1.15 1.15 

2.00 1.00 0.99 1.20 1.16 1.05 

1.50 1.08 1.06 1.15 1.13 1.08 

1.00 1.00 1.06 1.10 1.05 1.00 

0.50 0.84 0.95 0.95 1.05 0.80 

0.00 0.55 1.06 1.01 1.05 0.67 

 

 

Lockside – Depth 

Coordinates from centre line of outlet pipe 

Canal Canal depth at grid points (m) 

Width  Distance From Discharge Pipe (m) 

(m) -1.00 -0.50 0.00 0.50 1.00 

2.00 1.35 1.34 1.49 1.47 1.60 

1.50 1.20 1.26 1.20 1.25 1.40 

1.00 1.06 1.10 1.06 1.16 1.15 

0.50 1.04 1.06 1.04 1.06 1.04 

0.00 0.96 0.80 0.66 0.80 0.95 

 

 

 

 

 



216 
 

APPENDIX 4: REFINE CASE STUDY 

Refine Field Measured Data (Temperature, Velocity and Depth) 

CSB - Temperature  

 

Measured canal at discharge layer temperature: at (z = 0.075m) 

Distance from centre of pipe (across canal) perpendicular to plume(m) 

  1 0.8 0.6 0.4 0.2 y = 0 -0.2 -0.4 -0.6 -0.8 -1 

x=0 17.15 17.15 17.15 17.15 17.15 24.00 17.15 17.15 17.15 17.15 17.15 

0.5 17.15 17.15 17.15 17.31 18.60 20.12 18.60 17.42 17.15 17.15 17.15 

1 17.15 17.15 17.15 17.60 18.30 19.15 18.30 17.60 17.20 17.20 17.20 

1.5 17.15 17.15 17.40 17.70 18.23 18.85 18.30 17.70 17.40 17.20 17.20 

2 17.15 17.20 17.45 17.70 18.10 18.55 18.10 17.70 17.45 17.20 17.20 

2.5 17.15 17.17 17.38 17.74 18.05 18.20 18.05 17.74 17.40 17.24 17.20 

3 17.15 17.18 17.45 17.70 18.00 18.15 18.00 17.70 17.42 17.20 17.18 

3.5 17.15 17.15 17.40 17.75 18.00 18.1 18.00 17.75 17.41 17.18 17.18 

4 17.15 17.15 17.35 17.63 17.90 18.05 17.90 17.63 17.37 17.18 17.18 

4.5 17.15 17.15 17.30 17.60 17.90 18 17.90 17.60 17.31 17.18 17.15 

5 17.15 17.15 17.24 17.53 17.8 17.95 17.8 17.52 17.23 17.15 17.15 

 

 

 

 

Measured canal temperature at (0.6m) below free surface: (z = 0.6m) 

Distance from centre of pipe (across canal) perpendicular to plume(m) 

  1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 

0 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.18 

0.5 17.05 17.05 17.05 17.37 17.37 17.37 17.34 17.32 17.21 17.15 17.18 

1 17.05 17.05 17.05 17.49 18.05 18.05 18.08 17.79 17.25 17.15 17.18 

1.5 17.05 17.05 17.39 17.75 18.03 18.03 18.01 17.74 17.45 17.15 17.18 

2 17.05 17.05 17.61 17.61 18.01 18.02 17.89 17.71 17.68 17.15 17.18 

2.5 17.05 17.05 17.43 17.6 18 18.01 17.84 17.62 17.61 17.15 17.18 

3 17.05 17.15 17.35 17.6 17.93 17.95 17.81 17.61 17.6 17.15 17.18 

3.5 17.05 17.15 17.23 17.6 17.6 17.63 17.62 17.6 17.6 17.15 17.18 

4 17.05 17.15 17.2 17.51 17.55 17.6 17.58 17.58 17.54 17.15 17.18 

4.5 17.05 17.15 17.2 17.29 17.38 17.4 17.37 17.36 17.25 17.15 17.18 

5 17.05 17.15 17.15 17.25 17.27 17.35 17.35 17.29 17.21 17.15 17.15 
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Measured canal temperature at 0.1m above the bed: (z variable) 

Distance from centre of pipe (across canal) perpendicular to plume(m) 

  1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 

0 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.05 17.05 

0.5 17.05 17.05 17.15 17.31 17.31 17.31 17.31 17.31 17.15 17.05 17.05 

1 17.05 17.05 17.15 17.31 17.35 17.35 17.32 17.31 17.15 17.05 17.05 

1.5 17.05 17.05 17.15 17.32 17.36 17.36 17.32 17.31 17.15 17.05 17.05 

2 17.05 17.05 17.15 17.32 17.34 17.38 17.32 17.32 17.15 17.05 17.05 

2.5 17.05 17.05 17.15 17.41 17.5 17.57 17.56 17.45 17.15 17.05 17.05 

3 17.05 17.05 17.15 17.41 17.51 17.57 17.55 17.49 17.15 17.05 17.05 

3.5 17.05 17.05 17.15 17.39 17.47 17.54 17.52 17.46 17.15 17.05 17.05 

4 17.05 17.05 17.15 17.38 17.42 17.51 17.51 17.49 17.15 17.05 17.05 

4.5 17.05 17.05 17.15 17.38 17.37 17.37 17.37 17.35 17.15 17.05 17.05 

5 17.05 17.05 17.15 17.2 17.25 17.25 17.24 17.21 17.15 17.05 17.05 

 

CSB - Velocity  

Measured canal flow (m/sec) on discharge layer: (z = 0.075m) 

Distance from centre of pipe (across canal) perpendicular to plume(m) 

  1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 

0 0.03 0.03 0.03 0.03 0.03 1.23 0.03 0.03 0.03 0.03 0.03 

0.5 0.03 0.03 0.03 0.07 0.402 0.596 0.415 0.08 0.03 0.03 0.03 

1 0.03 0.03 0.08 0.298 0.377 0.574 0.379 0.301 0.08 0.03 0.03 

1.5 0.03 0.08 0.178 0.244 0.351 0.465 0.352 0.286 0.178 0.08 0.03 

2 0.08 0.144 0.156 0.222 0.332 0.377 0.332 0.244 0.156 0.222 0.08 

2.5 0.124 0.132 0.145 0.211 0.31 0.332 0.31 0.231 0.145 0.178 0.132 

3 0.122 0.126 0.138 0.2 0.244 0.31 0.288 0.2 0.137 0.134 0.128 

3.5 0.12 0.113 0.134 0.134 0.221 0.3 0.228 0.134 0.13 0.126 0.124 

4 0.102 0.108 0.111 0.113 0.178 0.2 0.211 0.178 0.123 0.122 0.111 

4.5 0.093 0.098 0.101 0.112 0.154 0.156 0.152 0.142 0.111 0.111 0.102 

5 0.093 0.093 0.095 0.098 0.102 0.134 0.134 0.102 0.101 0.093 0.073 

 

CSB - Depths  

Distance from centre of pipe (across canal) perpendicular to plume(m) 

  1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 

0 1.25 1.15 0.98 0.84 0.80 0.775 0.775 0.75 0.725 0.70 0.66 

0.5 1.25 1.13 0.98 0.95 0.80 0.775 0.775 0.77 0.725 0.70 0.65 

1 1.25 1.13 0.98 0.95 0.80 0.80 0.78 0.75 0.725 0.70 0.65 

1.5 1.25 1.13 1.01 0.95 0.88 0.85 0.78 0.75 0.74 0.725 0.66 

2 1.25 1.13 1.01 0.95 0.88 0.85 0.78 0.75 0.725 0.725 0.66 

2.5 1.25 1.13 1.05 1.0 0.90 0.85 0.775 0.75 0.725 0.70 0.66 

3 1.25 1.13 1.05 1.0 0.95 0.85 0.78 0.75 0.725 0.70 0.66 

3.5 1.25 1.13 1.05 1.0 0.95 0.85 0.78 0.75 0.725 0.70 0.65 

4 1.25 1.13 1.05 1.01 1.01 0.85 0.78 0.75 0.725 0.70 0.64 

4.5 1.25 1.13 1.05 1.01 0.95 0.85 0.78 0.75 0.75 0.75 0.65 

5 1.25 1.13 1.05 1.01 0.90 0.85 0.78 0.75 0.75 0.75 0.65 
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BBC Mailbox – Temperature 

Measured canal SURFACE WATER temperature: 

 3.2 18.6 18.6 18.6 18.7 18.7 18.7 18.6 18.6 18.6 

 3.0 18.6 18.65 18.7 18.75 18.75 18.75 18.7 18.65 18.6 

 2.8 18.65 18.7 18.75 18.8 18.8 18.8 18.75 18.7 18.65 

 2.6 18.7 18.8 18.8 18.85 18.85 18.85 18.8 18.8 18.7 

 2.4 18.7 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.7 

 2.2 18.8 18.9 18.95 18.95 18.95 18.95 18.95 18.9 18.8 

 2.0 18.85 18.95 19.0 19.0 19.0 19.0 19.0 18.95 18.85 

 1.8 18.9 19.0 19.0 19.05 19.05 19.05 19.05 19.0 18.9 

 1.6 18.9 19.0 19.1 19.1 19.1 19.1 19.1 19 18.9 

 1.4 18.7 18.7 18.7 18.85 18.85 18.85 18.7 18.7 18.7 

 1.2 18.7 18.7 18.7 18.8 18.8 18.8 18.7 18.7 18.7 

 1.0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 

 0.8 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 

 0.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 

 0.4 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 

 0.2 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 

 X=0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 

Distance from discharge Y= -2   1.5 1.0 0.5 0 0.5 1.0 1.5 Y=+2   

          

Distance from centre of pipe perpendicular to plume(m) 

 

 

Measured canal DISCHARGE LEVEL WATER temperature: 

 3.2 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 

 3 18.0 18.0 18.1 18.1 18.10 18.0 18.0 18.0 18.0 

 2.8 18.1 18.1 18.1 18.1 18.15 18.1 18.1 18.1 18.1 

 2.6 18.2 18.2 18.2 18.2 18.20 18.2 18.2 18.1 18.1 

 2.4 18.2 18.2 18.2 18.2 18.28 18.2 18.2 18.2 18.2 

 2.2 18.2 18.3 18.3 18.3 18.35 18.2 18.2 18.2 19.2 

 2 18.2 18.3 18.3 18.3 18.37 18.2 18.2 18.2 18.1 

 1.8 18.2  18.3 18.3 18.3 18.39 18.3 18.2 18.2 18.2 

 1.6 18.2 18.3 18.3 18.3 18.41 18.3 18.3 18.3 18.2 

 1.4 18.3 18.4 18.4 18.4 18.5 18.3 18.3 18.3 18.2 

 1.2 18.3 18.3 18.4 18.4 18.55 18.4 18.4 18.3 18.3 

 1 18.4 18.4 18.5 18.5 18.7 18.4 18.4 18.3 18.3 

 0.8 18.4 18.5 18.7 18.8 18.84 18.6 18.6 18.6 18.4 

 0.6 18.3 18.4 18.7 18.8 19.1 18.8 18.4 18.3 18.2 

 0.4 18.2 18.2 18.7 19.3 19.5 19.3 18.7 18.2 18.2 

 0.2 18.0 18.1 18.3 18.3 19.6 18.3 18.3 18.2 18.2 

 X=0 18.0 18.0 18.0 18.1 20  18.1 18.0 18.0 18.0 

Distance from discharge Y= -2 1.5 1 0.5 0 0.5 1 1.5 Y= 

          

Distance from centre of pipe perpendicular to plume(m) 
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Measured canal BED WATER temperature: 

 3.2 17.7 17.9 18.1 18.1 18.2 18.1 18.1 17.7 17.5 

 3.0 17.7 17.9 18.1 18.1 18.2 18.1 18.1 17.8 17.8 

 2.8 17.7 18.0 18.1 18.2 18.2 18.1 18.1 18.0 17.8 

 2.6 18.0 18.0 18.0 18.2 18.3 18.1 18.1 18.0 18.0 

 2.4 18.0 18.0 18.0 18.2 18.3 18.0 18.1 18.0 18.0 

 2.2 18.0 18.0 18.0 18.2 18.3 18.0 18.1 18.0 18.0 

 2.0 18.0 18.0 18.0 18.0 18.3 18.0 18.2 18.0 18.0 

 1.8 18.0 18.0 18.0 18.0 18.3 18.0 18.0 18.0 18.0 

 1.6 18.1 18.1 18.0 18.0 18.3 18.0 18.0 18.0 18.0 

 1.4 18.1 18.1 18.0 18.0 18.3 18.0 18.0 18.0 18.0 

 1.2 18.1 18.1 18.0 18.0 18.1 18.0 18.0 18.0 18.0 

 1.0 18.1 18.1 18.0 18.0 18.1 18.0 18.0 18.0 18.0 

 0.8 18.1 18.1 18.0 18.0 18.0 18.4 18.0 18.0 180 

 0.6 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 

 0.4 18.0 180 18.0 18.0 18.0 18.0 18.0 18.0 18.0 

 0.2 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 

 X=0 17.9 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 

Distance from discharge Y=-2 1.5 1.0 0.5 0 0.5 1.0 1.5 Y=+2      

          

Distance from centre of pipe perpendicular to plume(m) 

 

 

 

BBC Mailbox – Velocity 

Measured canal FLOW RATE (m/sec) 

           

           

 3.0   0.11  0.17  0.12   

 2.75          

 2.5   0.13  0.2  0.13   

 2.25          

 2.0   0.14  0.22  0.14   

 1.75          

 1.5   0.18  0.26  0.18   

 1.25          

 1.0   0.25  0.32  0.25   

 0.75          

 0.5   0.32  0.4  0.32   

 0.25          

 X=0     0.6     

Distance from discharge Y= -2 1.5 1.0 0.5 0 0.5 1.0 1.5 Y= 

          

Distance from centre of pipe perpendicular to plume (m) 
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BBC Mailbox - Depth 

Measured canal DEPTH: m 

 3.2          

 3.0   1.6  1.6  1.6   

 2.8          

 2.6          

 2.4          

 2.2          

 2.0   1.47  1.47  1.48   

 1.8          

 1.6          

 1.4          

 1.2          

 1.0   1.46  1.45  1.45   

 0.8          

 0.6          

 0.4          

 0.2          

 X=0   1.40  1.40  1.40   

Distance from discharge Y= -2 1.5 1 0.5 0 0.5 1 1.5 Y=-2 

          

Distance from centre of pipe perpendicular to plume(m) 
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Canalside West – Temperature 

 

 

 

 CSW - Temperature          

    50mm below surface     

 Distance along 

plume 

   Temperature ºC     

 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00  

 2.50 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.5  

 2.00 17.6 17.6 17.6 17.6 17.7 17.6 17.6 17.6 17.6  

 1.50 17.6 17.6 17.7 17.7 17.7 17.7 17.7 17.7 17.7  

 1.00 17.6 17.6 17.7 17.8 17.8 17.7 17.7 17.7 17.6  

 0.50 17.7 17.8 17.9 17.9 17.9 17.9 17.9 17.8 17.7  

 0.00 18.1 18.1 18.4 18.4 18.4 18.4 18.4 18.1 18.0  

            

 0.6m below surface, discharge layer  

 Distance along 

plume 

   Temperature ºC     

 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00  

 2.50 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.6  

 2.00 17.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6  

 1.50 17.6 17.7 17.8 17.8 17.8 17.8 17.8 17.7 17.7  

 1.00 17.7 17.8 17.9 18.0 18.0 18.0 18.0 17.8 17.7  

 0.50 17.9 17.9 18.2 18.4 18.5 18.4 18.3 18.0 18.0  

 0.00 18.0 18.0 18.3 18.3 19 18.3 18.3 18.0 18.0  

            

    50mm above bed      

 Distance along 

plume 

   Temperature ºC     

 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00  

 2.50 17.5 17.5 17.6 17.6 17.6 17.6 17.6 17.5 17.5  

 2.00 17.5 17.5 17.6 17.7 17.7 17.7 17.6 17.6 17.6  

 1.50 17.5 17.6 17.7 17.7 17.7 17.7 17.7 17.7 17.7  

 1.00 17.7 17.7 17.8 17.8 17.8 17.8 17.8 17.8 17.7  

 0.50 17.7 17.7 17.8 17.8 17.9 17.9 17.8 17.8 17.7  

 0.00 17.5 17.6 17.7 17.7 17.7 17.7 17.6 17.6 17.5  
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Canalside West – Velocity 

 

Flow measured at discharge layer  

Distance 

along 

plume 

(m) 

  Flow (m/s)   

Distance From Dishcarge Pipe (m) 

-1.00 -0.50 0.00 0.50 1.00 

2.50  0.045    0.085    0.045 

2.00 0.050    0.110    0.050  

1.50  0.08    0.255   0.081  

1.00 0.100   0.399   0.100 

0.50 0.085    0.54    0.087  

0.00 0.000   0.913   0.000 

 

 

Temperature and velocity along plume path line – Canalside West 

Distance along plume (m) 

0 0.5 1 1.5 2 2.5 

Canal measured data T˚C 19.0 18.5 18.3 18.1 18.0 18.0 

Canal measured data 

Um/s 0.91 0.66 0.5 0.4 0.3 0.18 

 

 

Canalside West – Depth 

 

Depth mm 

  Distance along 

plume -1.00 -0.50 0.00 0.50 1.00 

2.50 1.10 1.20 1.23 1.15 1.15 

2.00 1.00 0.99 1.20 1.16 1.05 

1.50 1.08 1.06 1.15 1.13 1.08 

1.00 1.00 1.06 1.10 1.05 1.00 

0.50 0.84 0.95 0.95 1.05 0.80 

0.00 0.55 1.06 1.01 1.05 0.67 
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Lockside – Temperature 

 

Temperature ˚C - 50mm below surface 

Distance along 

Plume (m) 

Distance across plume (m) 

-1.00 -0.50 0.00 0.50 1.00 

2.00 18.4 18.5 18.5 18.5 18.4 

1.50 18.6 18.7 18.8 18.7 18.6 

1.00 18.8 19.5 19.5 19.4 18.8 

0.50 19.0 19.3 19.8 19.3 19.1 

0.00 20.0 20.1 20.4 20.1 19.9 

      
Temperature ˚C – 0.65m below surface, discharge layer 

Distance along 

Plume (m) 

Distance across plume (m) 

-1.00 -0.50 0.00 0.50 1.00 

2.00 18.0 18.1 18.1 18.1 18.1 

1.50 18.1 18.3 18.5 18.3 18.3 

1.00 18.3 18.4 19.4 18.4 18.4 

0.50 18.4 18.5 20.5 18.5 18.4 

0.00 18.5 19.0 22 19.1 18.7 

      
Temperature ˚C - 50mm above bed 

Distance along 

Plume (m) 

Distance across plume (m) 

-1.00 -0.50 0.00 0.50 1.00 

2.00 17.7 17.7 17.7 17.7 17.7 

1.50 17.8 18.0 18.0 18.0 17.9 

1.00 18.2 18.4 18.4 18.4 18.2 

0.50 18.4 18.7 19.1 19.0 18.5 

0.00 18.7 19.0 19.5 19.0 18.7 

 

Lockside – Velocity 

Flow at discharge layer 

Canal     Flow m/s   

Width Distance From Discharge Pipe (m) 

  (m) -1.00 -0.50 0.00 0.50 1.00 

2.00 0.085   0.231   0.085 

1.50  0.110   0.35     0.110 

1.00 0.25   0.542   0.245 

0.50 0.072    0.89     0.075 

0.00 0.0   1.217   0.0 

 



224 
 

 

 

Temperature and velocity along plume path line – Lockside 

Distance along plume (m) 

    0 0.5 1 1.5 2 2.5 

Canal measured data T˚C 22 20.7 19.8 19.2 18.7 18.1 
Canal measured data Um/s 1.22 0.89 0.71 0.51 0.4 0.24 

 

 

 

 

Lockside – Depth 

Coordinates from centre line of outlet pipe 

Canal Canal depth at grid points (m) 

Width  Distance From Discharge Pipe (m) 

(m) -1.00 -0.50 0.00 0.50 1.00 

2.00 1.35 1.34 1.49 1.47 1.60 

1.50 1.20 1.26 1.20 1.25 1.40 

1.00 1.06 1.10 1.06 1.16 1.15 

0.50 1.04 1.06 1.04 1.06 1.04 

0.00 0.96 0.80 0.66 0.80 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 



225 
 

APPENDIX 5: KIRKLEES COLLEGE CASE STUDY 

 

 

Kirklees College Canal Water Cooling System Heat Rejection 

 

 

 

 

 

 

 

By: Jafar Ali and John Fieldhouse  

University of Huddersfield 

School of Computing and Engineering 

Department of Engineering and Technology 

 

 

 

 

 

 

 

 

 

A report submitted to 

Kirklees College, July, 2010 



226 
 

Summary 

This study is undertaken by the University of Huddersfield to determine the possibility of 

using British Waterways canal water cooling system by Kirklees College. It is found that the 

canal will be able to absorb the rejected heat of 3470 kW within 3-4m distance from the 

outfall. These results are presented for a number of different models developed by the 

University of Huddersfield to predict the behaviour of thermal plume discharge into shallow 

and still receiving water. 

The maximum temperature of water discharged does not exceed the Environment Agency 

Regulation limit of 28	C, for limitation of impact to aquatic life.  

   

Introduction 

The University of Huddersfield have developed three models to predict the behaviour of 

cooling water discharge into the British Waterway’s canal that runs through Huddersfield, 

known as Huddersfield Narrow canal. The models are linked together and each investigates 

different properties from a given thermal discharge; one model predicts temperature decay 

whereas another predicts velocity and finally a 3-dimensional model of the size of the plume 

represents the discharge zone. In this study all these models are run to investigate the 

possibility of using canal to dissipate heat rejected by Kirklees College.   

The initial temperature and flow rate data used in this study, and applied to the model, has 

been provided by Kirklees College contractor Max Fordham consulting engineers and is 

described in the following sections. 

Note: Three studies are described within the main report – two single discharge outlets (each 

with different pipe diameters), the second multi-point discharge and the third a further single 

discharge with different initial parameters. 

 

Study 1a – Single discharge but 2 different discharge diameters. 

 

Temperature Prediction 

The university has developed a mathematical model that may be used to predict the 

temperature dilution of cooling water discharge into a still water environment – typically 

British Waterways canals. The model is applied to determine the temperature profile of the 

cooling water discharge from Kirklees (Huddersfield Technical) College new building into 



 

the Huddersfield narrow canal using the initial temperature and fl

Max Fordham. The following data has been used; 

 

 

Study 1a - Pipe Diameter 475 mm

• Discharge temperature is 24

• Canal ambient temperature is 19

• Discharge pipe diameter 

• Discharge flow rate is 

The discharge velocity will be 0.94m/s, the average depth of canal assumed to be 1.2m and 

the depth of discharge to the bed 0.55m. 

plume path line. 

 

 

Figure 1: Temperature dilution along the centrel

 

For temperature along the lateral axis (y) across the plume path line, the following profiles 

obtained, see figure 2:  
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the Huddersfield narrow canal using the initial temperature and flow rate data provided by 

Max Fordham. The following data has been used;  

Pipe Diameter 475 mm 

Discharge temperature is 24	C,  

Canal ambient temperature is 19	C,  

Discharge pipe diameter 0.475m   

Discharge flow rate is 166.32 l/s.  

The discharge velocity will be 0.94m/s, the average depth of canal assumed to be 1.2m and 

the depth of discharge to the bed 0.55m. Figure 1 illustrates the temperature dilution along the 

Figure 1: Temperature dilution along the centreline of the plume 

 

For temperature along the lateral axis (y) across the plume path line, the following profiles 

ow rate data provided by 

The discharge velocity will be 0.94m/s, the average depth of canal assumed to be 1.2m and 

illustrates the temperature dilution along the 

 

ine of the plume  

For temperature along the lateral axis (y) across the plume path line, the following profiles 



 

Figure 2: Temperature dilution across the centreline at x = 1m and x = 3m from outfall

 

Velocity Prediction 

The parameters used in the previous clause are used in this section to predict the velocity 

profile along the plume path line using the model developed by the University of 

Huddersfield. The obtained result is shown in 

 

Figure 3: Velocity along

The lateral velocity profile along the y axis across the plume path line is demonstrated in 

figure 4: 
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Figure 2: Temperature dilution across the centreline at x = 1m and x = 3m from outfall

The parameters used in the previous clause are used in this section to predict the velocity 

profile along the plume path line using the model developed by the University of 

Huddersfield. The obtained result is shown in figure 3: 

Figure 3: Velocity along the plume centreline 

 

The lateral velocity profile along the y axis across the plume path line is demonstrated in 

 

Figure 2: Temperature dilution across the centreline at x = 1m and x = 3m from outfall 

The parameters used in the previous clause are used in this section to predict the velocity 

profile along the plume path line using the model developed by the University of 

 

The lateral velocity profile along the y axis across the plume path line is demonstrated in 
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Figure 4: Velocity across the plume centreline at x = 1m and x = 3m 

 

3D Model Plume Size 

To observe the behaviour of the thermal plume below the free surface of canal, the university 

has developed a 3D model to predict the plume size. This model is the most important 

prediction as it is the characteristics of the mixing zone below the surface which has been 

difficult to predict in the past. Using the parameters given in the last two clauses the size of 

the plume discharged by the Kirklees College new site will be as shown in figure 5. The 

figures show the plan and sectional view of the discharge plume below the free surface of 

canal. Note the colour gradients in the figure indicate to the distance and not temperature or 

velocity. Flat surface in the sectional view is the free surface of canal and -0.5 is the bed level 

of canal. 

 

Study 1b – Pipe Diameter 500 mm 

General parameters as before but pipe diameter 500mm 

• Discharge temperature is 24	C,  

• Canal ambient temperature is 19	C,  

• Discharge pipe diameter 0.500m   

• Discharge flow rate is 166.32 l/s.  

 

The discharge velocity will be 0.848m/s, the average depth of canal assumed to be 1.2m and 

the depth of discharge to the bed 0.55m.  
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Figure 5: Size of thermal plume below the free surface of canal (plan and sectional view).  

 

 

Temperature: 

The temperature dilution along the centreline of the plume is presented in figure 6. Figure 7 

demonstrates the temperature dilution across the centreline of the plume. 

 



 

Figure 6: Temperature dilution along the plume centreline

Figure 7: Temperature dilution across the plume path line at x = 1m and x = 3m

 

Velocity: 

Velocity decay along the centreline of the plume ilustrates in 

centreline of the plume at two locations 1m and 3m from the outfall are shown in 
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Figure 6: Temperature dilution along the plume centreline

 

 

Figure 7: Temperature dilution across the plume path line at x = 1m and x = 3m

 

Velocity decay along the centreline of the plume ilustrates in figure 8, the velocity across the 

centreline of the plume at two locations 1m and 3m from the outfall are shown in 

 

Figure 6: Temperature dilution along the plume centreline 

 

Figure 7: Temperature dilution across the plume path line at x = 1m and x = 3m 

, the velocity across the 

centreline of the plume at two locations 1m and 3m from the outfall are shown in figure 9. 
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Figure 8: Velocity along the plume centreline 

 

 

Figure 9: Velocity across the plume centreline at x = 1m and x = 3m 

 

Plume size: 

In figure 10 the size of the plume is presented in different view. The colours in the figure 

indicate to the distance. 
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Figure 10: Plume size (colours indicate to distance). Flat surface in the sectional view is the 

free surface of canal and -0.5 is the bed level of canal. 

 

In case of multiple outlet discharge the plan view of mixing zone will be as shown in figure 

11. Ten nozzles of 0.1m diameter and 0.5m apart are modelled. The length of the plume 

illustrate in the figure is 1.2m from the outfalls. Discharge temperature is 24˚C and the 

ambient 19˚C; the mixing zone will be as follow.  

 

Study 2 – Multiple point discharge (10 outlets). 

Criteria:  

General parameters as before but pipe diameter 100mm per outlet 

• Discharge temperature is 24	C,  

• Canal ambient temperature is 19	C,  

• Discharge pipe diameter 0.100m   
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• Total discharge flow rate is 166.32 l/s 

• Discharge per outlet 16.6 l/s.  

• Fd = 64.77 

 

The discharge velocity will be 2.1 m/s, the average depth of canal assumed to be 1.2m and the 

depth of discharge to the bed 0.55m. Figure 11 demonstrate the size of plumes for a distance 

1.2m from the outfall.  

  

 

 

a. Plan view 

 

b. Sectional view 

Figure 11: Multi diffusers discharge (colours indicate to distance) 

 

Figure 12 shows the dilution of the temperature along the centreline of a single plume in 

multi-point discharge, whilst figure 13 shows the temperature dilution across the centreline at 

two different locations; x = 1m and x = 3m from the outfall. 

 

Discharge 

pipe 

Plume 
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Figure 12: Temperature along the centreline of the plume (multipoint discharge) 

 

 

  

Figure 13: Temperature across the centreline at x = 1m and x = 3m from outfall 

 

In figures 14 and 15 velocity decays along and across the centreline of the plume are 

presented respectively. 
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Figure 14: Velocity along the centreline of plume (multipoint discharge) 

 

  

Figure 15: Velocity across the centreline of plume at x = 1m and x = 2m from outfall 

 

Study Results 

The studies indicate to the following results: 

1. Temperature: the core temperature profile in figure 1 shows clearly how it is decreased 

from 24	C at the outfall when x = 0m to just above the canal ambient temperature 19.5	C 

when x = 3m. The lateral distribution figure 2 indicates to temperature around 21.4	C when 

x = 1m and around 21.16	C when x = 2m. 
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2. Velocity: it is reduced from 0.94m/s at the outfall when x = 0m to 0.18m/s when x = 3m, 

see figure 3. The lateral velocity profiles in figure 4  show the velocity around 0.54m/s at the 

centre (path line) and 0.33m/s at y = 1m and x = 1m. These values reduced to 0.31m/s at the 

centre and 0.2m/s at y = 1m and x = 2m. 

3. Plume size: 3 dimensional view of the plume size below the free surface is produced in 

figure 5. The edges of the plume and the area when the plume reaches the surface can be seen 

clearly. A big area between the canal bed and mixing zone is shown in figure 5 which can be 

used by the aquatic to pass the region safely if temperature in the mixing zone is not desirable 

for them.  

In study 1a when the discharge pipe diameter is 0.5 and velocity 0.848m/s, slight different 

will achieve in heat dissipation and velocity reduced, see figures 6 to 10. 

Multi point discharged is studied and the profiles of the temperature and velocity are 

presented. The graphs show the temperature balance within a distance 5m from the outfall in 

the case of the multi-point discharge, but the impact between the edges of the plume is not 

considered in this study. 

 

Conclusions 

The great decrease in the plume temperature within a distance of 3m from the outfall indicates 

to the ability of canal to dissipate the amount of heat discarded. The temperature difference of 

0.5	C between the plume and the canal ambient water temperature means the majority of 

heat loaded to the canal is dissipated within the mixing zone. The remaining heat will be lost 

when the temperature difference becomes zero. Beyond the mixing zone the canal water 

ambient temperature is not affected. As the biological impact the temperature at any point 

does not reach the Environment Agency limit 28	C and region is safe for aquatic life-forms. 

The study concludes that the Kirklees College and their contractors can safely using the canal 

water cooling system using the parameters provided by the Max Fordham and as applied in 

this study.   
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Summary 

This report is study the heat diffusion profile of cooling water discharge from Enviroenergy 

into Nottingham canal. Two different plumes are discussed and the path line of each plume is 

predicted. Temperature and velocity profiles along and across the plume path line are 

determined. In addition Three-dimensional model of the size of the plumes are presented. 

The study is theoretical application only without comparison with the experimental measured 

data. It is intended to carry out the theoretical analyses first and then to perform the 

experiments on the canal site. 

  

1. Introduction 

This report should be considered as part of the validation procedure for acceptance of the 

mathematical model as developed at the University of Huddersfield. The process is to provide 

this preliminary report and then to compare these predicted results with the on-site 

measurements. 

The parameters used in this report are provided by the British Waterways; however in some 

cases some approximations are required. It is known that the discharge is multi diffusers; 

three pipes with diameter 15in (0.381m) and a single pipe with diameter 6in (0.152m). The 

depth of canal at margins is 0.5m and at the centre is 1m. Temperature difference is 5 ˚C, 

therefore it is assumed that the discharge temperature 25 ˚C and the canal ambient 20 ˚C. 

Discharge velocity is not given, the maximum flow rate been measured is 1619 m^3/hr 

(0.45m^3/s). This value is the total flow rate from the pipes (four discharge pipes).  

 

The following flow rates are obtained by assuming the discharge is proportional to the pipe 

areas, i.e. the discharge velocity is the same:  

Flow rate for the big pipes = 0.1425m^3/s 

Flow rate for the small pipe = 0.02267m^3/s 

 

Total flow rate = Flow rate for the big pipes + Flow rate for the small pipe  

(0.45m^3/s) = 3 * (0.1425m^3/s) + (0.02267m^3/s) 

 

Discharge velocity of all pipes will be: 

 

U = 1.25m/s  

 

Note that the flow rate distribution described above means the bigger pipe will be 6.25 times 

the smaller pipe as they have a diameter 2.5 times the diameter of the small pipe. 

  

 



 

2. Big pipes plume study 

Three of the discharge pipes have same diameter and it’s bigger than the other pipe. The 

following parameters are used to model plume discharged from the big pipes:

 Average depth of canal within the mixing zone: H = 0.6m

Canal ambient water temperature: 

Discharge temperature: T0 = 25°C

Discharge pipe diameter: D01 =

Discharge velocity: U = 1.25m/s

Discharge pipe depth: z0 = 0.31

Densimetric Froude number F

 

The path line of plume from the centre of the discha

be as illustrated in figure 2.1 

 

2.1 Temperature study 

Temperature along the path line of plume is predicted and presented in the figure 2.2a. 

Whereas the temperature along the path 

the free surface is presented in figure 2.2b.

Note: the developed model by the University of Huddersfield is better evaluating the 

temperature and velocity for the path line of plume before reaching the

plume beyond that point at the surface affected by atmosphere. However the model still able 

to give a good percentage of accuracy for path line on the surface. 
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Three of the discharge pipes have same diameter and it’s bigger than the other pipe. The 

following parameters are used to model plume discharged from the big pipes:

Average depth of canal within the mixing zone: H = 0.6m 

water temperature: Ta= 20°C 

= 25°C 

= 0.381m 

Discharge velocity: U = 1.25m/s 

0.31 

Densimetric Froude number Fd1: = 18.96 

The path line of plume from the centre of the discharge pipe to the free surface of canal will 

Figure 2.1: Plume path line 

Temperature along the path line of plume is predicted and presented in the figure 2.2a. 

Whereas the temperature along the path line for longer distance i.e. after the plume reaches 

the free surface is presented in figure 2.2b. 

Note: the developed model by the University of Huddersfield is better evaluating the 

temperature and velocity for the path line of plume before reaching the surface. Because the 

plume beyond that point at the surface affected by atmosphere. However the model still able 

to give a good percentage of accuracy for path line on the surface.  

Three of the discharge pipes have same diameter and it’s bigger than the other pipe. The 

following parameters are used to model plume discharged from the big pipes: 

rge pipe to the free surface of canal will 

 

Temperature along the path line of plume is predicted and presented in the figure 2.2a. 

line for longer distance i.e. after the plume reaches 

Note: the developed model by the University of Huddersfield is better evaluating the 

surface. Because the 

plume beyond that point at the surface affected by atmosphere. However the model still able 



 

2.2a: Temperature along the path line below the surface

Figure 2.2: Temperature along the path line

The lateral distribution of temperature across the path line 

different distance from the outfall; at x = 0.5m, x = 1m, x = 2m and x = 3m. It is 

know the width of plume to determine the lateral distribution along

constant along the plume and equal to 4m. Therefore the temperature distribution

path line of plume are as in the figure 2.3.

Figure 2.3: Temperature across the path line of plume
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2.2a: Temperature along the path line below the surface   2.2b: Temperature along the path line 

Figure 2.2: Temperature along the path line 

The lateral distribution of temperature across the path line of plume are determined at four 

different distance from the outfall; at x = 0.5m, x = 1m, x = 2m and x = 3m. It is 

know the width of plume to determine the lateral distribution along it. Assume the 

constant along the plume and equal to 4m. Therefore the temperature distribution

as in the figure 2.3. 

  

  
igure 2.3: Temperature across the path line of plume 

 
ature along the path line within 3m 

plume are determined at four 

different distance from the outfall; at x = 0.5m, x = 1m, x = 2m and x = 3m. It is important to 

. Assume the width as a 

constant along the plume and equal to 4m. Therefore the temperature distributions across the 

 

 



 

2.2 Velocity study 

The profiles of temperature and velocity are self similar and the same procedure applied to 

determine them, figure 2.4 present the velocity along the path line. Figure 2.5 present th

velocity across the path line. 

 
2.4a: Velocity along the path line below the surface

Figure 2.4: Velocity along the path line of plume

 

Figure 2.5 Velocity across the path line of

2.3 3D Model 

The size of plume below the surface is predicted, the isometric view of the plume is presented 

in figure 2.6, whereas the plan view is presented in figure 2.7.
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The profiles of temperature and velocity are self similar and the same procedure applied to 

determine them, figure 2.4 present the velocity along the path line. Figure 2.5 present th

 
along the path line below the surface                2.4b: Velocity along the path line 

Figure 2.4: Velocity along the path line of plume 

 

   
Figure 2.5 Velocity across the path line of plume 

The size of plume below the surface is predicted, the isometric view of the plume is presented 

in figure 2.6, whereas the plan view is presented in figure 2.7. 

The profiles of temperature and velocity are self similar and the same procedure applied to 

determine them, figure 2.4 present the velocity along the path line. Figure 2.5 present the 

 
along the path line within 3m 

 

  

The size of plume below the surface is predicted, the isometric view of the plume is presented 
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Figure 2.6: Size of plume below the free surface of canal 

 

 
Figure 2.7: Plan view of the plume 

 

From the plan view of the plume it is found that the width of the plume at x = 0.5m is 0.7m (y 

= ± 3.5) and not 4m as it is modelled and presented in the figures 2.3 and 2.5. And then the 

plume get wider, therefore the lateral distribution model for temperature and velocity will be 

repeated. Determine the lateral profiles at four different distance from the outfall (x = 0.5, 1, 2 



 

and 3m) and four different width of (y = ±0.35, ±0.5, ±1 and ±2m). Figures 2.8 and 2.9 are 

illustrated temperature and velocity profiles respectively. 

 

 

 
 

Figure 2.8: Temperature across the path line
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and 3m) and four different width of (y = ±0.35, ±0.5, ±1 and ±2m). Figures 2.8 and 2.9 are 

mperature and velocity profiles respectively.  

  

  
Figure 2.8: Temperature across the path line 

 

 

 

  

and 3m) and four different width of (y = ±0.35, ±0.5, ±1 and ±2m). Figures 2.8 and 2.9 are 

 

 

 



 

Figure 2.9: Velocity across the path line of plume

 

3. Small pipe plume study 

The number of the big discharge pipes is three, the fourth 

studied in this section. The following parameters are used for the small pipe that is similar to 

the big pipes parameters except the pipe diameter:

Average depth of canal within the mixing zone: H = 0.6m

Canal ambient water temperature: 

Discharge temperature: T0 = 25°C

Discharge pipe diameter: D02 =

Discharge velocity: U = 1.25m/s

Discharge pipe depth: z0 = 0.31

Densimetric Froude number F

Figure 3.1 shows the path line of plume from the centre of the discharge pipe to the free 

surface of canal. 

The analyses start with 3D-model to determine the size of the plume, so the width of the 

plume will be known. This is help to predict the temperature and velocity profiles ac

across the path line of the plume.
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Figure 2.9: Velocity across the path line of plume 

The number of the big discharge pipes is three, the fourth pipe is the smaller and it will be 

studied in this section. The following parameters are used for the small pipe that is similar to 

the big pipes parameters except the pipe diameter: 

Average depth of canal within the mixing zone: H = 0.6m 

er temperature: Ta= 20°C 

= 25°C 

= 0.152m 

Discharge velocity: U = 1.25m/s 

0.31 

Densimetric Froude number Fd2: = 30.03 

Figure 3.1: Plume path line 

line of plume from the centre of the discharge pipe to the free 

model to determine the size of the plume, so the width of the 

plume will be known. This is help to predict the temperature and velocity profiles ac

across the path line of the plume. 

 

pipe is the smaller and it will be 

studied in this section. The following parameters are used for the small pipe that is similar to 

 

line of plume from the centre of the discharge pipe to the free 

model to determine the size of the plume, so the width of the 

plume will be known. This is help to predict the temperature and velocity profiles across it, 
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3.1 3D Model 

The size of the plume discharged from the small pipe is presented in the figure 3.2 and the 

plan view of the plume in the figure 3.3: 

 

 
 

Figure 3.2: Size of the plume below the free surface 

 

 
Figure 3.3: Plan view of the plume 



 

3.2 Temperature study 

Temperature along the centreline of plume is presented in the figure 3.4. Part (a) of the figure 

is the temperature profile along the path line below the surface, whilst part (b) is the 

temperature profile along the path line of the plume to extend to 3m downstream.

 

3.4a: Temperature along the path line below the surface

Figure 

 

Figure 3.5 show the temperature across the path line at four different distance from the 

discharge (x = 0.5, 1, 2 and 3m) and along the width (y = ±0.25, ±0.35, ±0.75 and ±1.5)
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Temperature along the centreline of plume is presented in the figure 3.4. Part (a) of the figure 

is the temperature profile along the path line below the surface, whilst part (b) is the 

profile along the path line of the plume to extend to 3m downstream.

  
a: Temperature along the path line below the surface         3.4b: Temperature along the path line 

Figure 3.4: Temperature along the path line 

erature across the path line at four different distance from the 

discharge (x = 0.5, 1, 2 and 3m) and along the width (y = ±0.25, ±0.35, ±0.75 and ±1.5)

  

Temperature along the centreline of plume is presented in the figure 3.4. Part (a) of the figure 

is the temperature profile along the path line below the surface, whilst part (b) is the 

profile along the path line of the plume to extend to 3m downstream. 

 
: Temperature along the path line within 3m 

erature across the path line at four different distance from the 

discharge (x = 0.5, 1, 2 and 3m) and along the width (y = ±0.25, ±0.35, ±0.75 and ±1.5) 

 



 

Figure 3.5: Temperature across the path line of plume

 

3.3 Velocity study 

The above procedures are followed to determine velocity profiles along the same axis. Figures 

3.6 show the velocity along the path line of plume whilst figures 3.7 show the velocity across 

the path line. 

3.6a: Velocity along the path line below the surface

Figure 3.6: Velocity along the path line of plume
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Figure 3.5: Temperature across the path line of plume 

 

procedures are followed to determine velocity profiles along the same axis. Figures 

3.6 show the velocity along the path line of plume whilst figures 3.7 show the velocity across 

 
along the path line below the surface                3.6b: Velocity along the path line 

Figure 3.6: Velocity along the path line of plume 

  

 

procedures are followed to determine velocity profiles along the same axis. Figures 

3.6 show the velocity along the path line of plume whilst figures 3.7 show the velocity across 

 
along the path line within 3m 

 



 

 

 

Figure 3.7: Velocity across the path line of plume

 

 

4. Conclusion 

Two thermal plumes have been studied and treated individually. The path

predicted. The temperature and velocity along and across the path line are determined. 

Temperature balance achieved within three meters from the outfall. Size of the plume below 

the free surface of canal is predicted, the isometric an

presented. The theoretical results in this report will be compared with the experiments 

measured data after the latter are performed. Therefore the comparison of the results is not 

included in the current study. 

 

Appendix: On-site measurements procedure 

The plan may be changed to suite the site application

 

Average depth of canal within the mixing zone: H 

Canal ambient water temperature: 

Air ambient temperature:  

Thermal image: 

 

Big pipes data 

Discharge temperature: T01 

Discharge pipe diameter: D01  

Discharge velocity: U1  

Discharge pipe depth: z01 
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Figure 3.7: Velocity across the path line of plume 

Two thermal plumes have been studied and treated individually. The path 

predicted. The temperature and velocity along and across the path line are determined. 

Temperature balance achieved within three meters from the outfall. Size of the plume below 

the free surface of canal is predicted, the isometric and plan view for each plume are 

presented. The theoretical results in this report will be compared with the experiments 

measured data after the latter are performed. Therefore the comparison of the results is not 

 

site measurements procedure  

The plan may be changed to suite the site application 

Average depth of canal within the mixing zone: H  

Canal ambient water temperature: Ta   

 

 

 line of the plume is 

predicted. The temperature and velocity along and across the path line are determined. 

Temperature balance achieved within three meters from the outfall. Size of the plume below 

d plan view for each plume are 

presented. The theoretical results in this report will be compared with the experiments 

measured data after the latter are performed. Therefore the comparison of the results is not 
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Temperature on the surface of canal 

Distance across plume 

Distance 

along plume 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

0          

0.8          

1          

2          

3          

 

 

Temperature below the surface of canal at various depth 

                      Distance across plume 

Distance 

below surface 

Distance 

along plume 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

0.34 0          

0.32 0.1          

0.27 0.3          

0.19 0.5          

0.07 0.7          

 

 

Velocity: 

Velocity on the surface of canal 

Distance across plume 

Distance 

along plume 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
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0.8          

1          

2          

3          

 

Velocity below the surface of canal at various depth 

                      Distance across plume 

Distance 

below surface 

Distance 

along plume 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

0.34 0          

0.32 0.1          

0.27 0.3          

0.19 0.5          

0.07 0.7          
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Small pipe data 

Discharge temperature: T02 

Discharge pipe diameter: D02  

Discharge velocity: U2  

Discharge pipe depth: z02 

 

 

Temperature on the surface of canal 

Distance across plume 

Distance 

along plume 
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Temperature below the surface of canal at various depth 

                      Distance across plume 

Distance 

below surface 

Distance 

along plume 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

0.34 0          

0.32 0.1          

0.27 0.3          

0.19 0.5          

0.07 0.7          

 

 

 

 

 

Velocity: 

Velocity on the surface of canal 

Distance across plume 

Distance 

along plume 
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Velocity below the surface of canal at various depth 

                      Distance across plume 

Distance 

below surface 

Distance 

along plume 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

0.34 0          

0.32 0.1          

0.27 0.3          

0.19 0.5          
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APPENDIX 7: 3-D PLUME SIZE MATLAB CODE 

 

 

% Finding the size of the discharge plume below the surface 

% Insert longitudinal distance  

x=      %space curve [x y z] 

% insert desimetric Froude number 

Fd = 

 

%Insert canal depth 

H = 

 

%Insert discharge pipe depth 

z0 = 

 

%Discharge pipe diameter 

D =  

Lm =((pi/4)^0.25)*D*Fd; 

m = H - z0; 

y=zeros(size(x)); 

% Plume path line equation 

z = (0.1*z0/Fd*exp(( (1.4*D*Fd/(H-z0)))*(x./Lm)))-(0.1*z0/Fd); 

%ind=find(z>m); 

%z(ind)=NaN; 

 

N=length(x); 

% Plume edge equation 

zu = (D/2)+((0.1*z0/Fd*exp(( (1.7*D*Fd/(H-z0)))*(x./Lm)))-(0.1*z0/Fd)); 

 

rz = (zu - z); 

 

% Plume half width equation 

ry =(D/2) + ((15.5 * (D)/Lm)) * x - (0.1*(z0)/Lm^2)*x.^2; 

 

x=x';      %rows changed to columns 

y=y';      %ditto 

z=z';      %ditto 

 

dydx = ((1.4*D*Fd/(H-z0))*0.1*z0/Fd*exp(( (1.4*D*Fd/(H-z0)))*(x./Lm))); 
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%dydx=a*alpha*exp(alpha*x); 

mag=sqrt(1+dydx.^2); 

n=[-dydx./mag zeros(N,1) 1./mag]; %unit normal vector 

b=[zeros(N,1) ones(N,1) zeros(N,1)]; %binormal vector 

 

subdivs=500; %number of angular subdivisions 

 

  X=zeros(N,subdivs); 

  Y=zeros(N,subdivs); 

  Z=zeros(N,subdivs); 

 

  theta=0:(2*pi/(subdivs-1)):(2*pi); 

 

  for i=1:N 

    X(i,:)=x(i) + rz(i)*n(i,1)*cos(theta) + ry(i)*b(i,1)*sin(theta); 

    Y(i,:)=y(i) + rz(i)*n(i,2)*cos(theta) + ry(i)*b(i,2)*sin(theta); 

    Z(i,:)=z(i) + rz(i)*n(i,3)*cos(theta) + ry(i)*b(i,3)*sin(theta); 

  end 

  

  ind=find(Z>m); 

 Z(ind)=NaN; % to cut any values above m 

  ind = find(X<0.05); 

  X(ind)=NaN; 

  

   

  %index = find (x==5); 

surf(X,Y,Z); 

  

shading interp 

 

   

%view(180,90) 

view(180,0) 

%view(168,41) 

vvv 
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APPENDIX 8: EXPERIMENTAL AND PREDICTED PLUME PATH 

LINE DATA 

 

Plume centreline path z (cm), experiment 

Fd 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 

Fd14.39 0 0.1 0.2 0.4 0.8 1.4 2.4 3.8 7             

Fd41.48 0 0 0 0.1 0.2 0.4 0.7 1.1 1.7 2.4 3.5 5.4 7     

Fd38.59 0 0 0.2 0.4 0.6 1.1 1.7 3 4.9             

Fd31.51 0 0 0 0 0.1 0.2 0.4 0.7 1.1 1.5 2.1 3 4.1 5.8 7 

Fd16.29 0 0.1 0.2 0.4 0.7 1.2 2 3.1 7             

 

Plume centreline path z (cm), model 

Fd 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 

Fd14.39 0 0.07 0.19 0.39 0.74 1.33 2.34 4.05 6.96             

Fd41.48 0 0.02 0.05 0.1 0.18 0.3 0.5 0.81 1.31 2.1 3.36 5.37 8.57     

Fd38.59 0 0.03 0.1 0.22 0.44 0.85 1.61 3.03 5.67             

Fd31.51 0 0.01 0.03 0.06 0.1 0.17 0.27 0.42 0.64 0.98 1.5 2.27 3.45 5.23 7.91 

Fd16.29 0 0.05 0.15 0.32 0.63 1.16 2.11 3.8 6.8             
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APPENDIX 9: EXPERIMENTAL AND PREDICTED TEMPERATURES 

ALONG AND ACROSS PLUME PATH  

 

(Temperature along plume path line) 

 

Temperature along plume path line �C, experiment 

Fd 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 

Fd14.39 24 22.1 20.3 19.3 18.6 18.1 17.8 17.6 17.4             

Fd41.48 20 19.5 19.1 18.7 18.5 18.2 18 17.85 17.7 17.6 17.5 17.4 17.3     

Fd38.59 25 23 21.5 20.3 19.7 19 18.4 18 
17.8   

          

Fd31.51 25 23.7 22.6 21.8 21.1 20.4 19.8 19.4 19 18.7 18.4 18.2 18 17.8 17.6 

Fd16.29 25 22.2 20 18.8 18.1 17.7 17.5 17.4 17.2             

 

Temperature along plume path line �C, model 

Fd 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 

Fd14.39 24 21.96 20.51 19.49 18.76 18.25 17.88 17.63 17.44             

Fd41.48 20 19.55 19.17 18.85 18.57 18.34 18.14 17.97 17.82 17.7 17.59 17.5 17.43     

Fd38.59 25 23.19 21.79 20.71 19.87 19.22 18.72 18.33 18.03             

Fd31.51 25 23.62 22.48 21.53 20.75 20.1 19.56 19.12 18.75 18.45 18.2 18 17.82 17.68 17.56 

Fd16.29 25 21.64 19.69 18.56 17.9 17.53 17.3 17.18 17.1             

 

 

 (Temperature across plume path line) 

Run 4, Fd 14.39 

Temperature across the plume path line � C, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 5           19.2 19.9 20.3 19.9 19.2           

x 10       18.15 18.35 18.45 18.52 18.6 18.52 18.45 18.35 18.15       

x 15   17.62 17.64 17.66 17.67 17.68 17.8 17.8 17.8 17.68 17.67 17.66 17.64 17.62   

x 20     17.26 17.27 17.28 17.3 17.4 17.4 17.4 17.3 17.28 17.27 17.26     

Temperature across the plume path line � C, model 

x 5           19.38 20.18 20.51 20.18 19.38           

x 10       18.12 18.37 18.57 18.71 18.76 18.71 18.57 18.37 18.12       

x 15   17.54 17.63 17.71 17.78 17.83 17.87 17.88 17.87 17.83 17.78 17.71 17.63 17.54   

x 20 17.3 17.33 17.36 17.39 17.41 17.43 17.44 17.44 17.44 17.43 17.41 17.39 17.36 17.33 17.3 

 

 

 

 

 



257 
 

Run 6, Fd 41.48 

Temperature across the plume path line � C, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 5             18.8 19.1 18.8             

x 10             18.4 18.5 18.4             

x 15           17.9 18 18 18 17.9           

x 20         17.6 17.65 17.7 17.7 17.7 17.65 17.6         

Temperature across the plume path line � C, model 

x 5             18.74 19.17 18.74             

x 10             18.46 18.57 18.46             

x 15           17.98 18.09 18.13 18.09 17.98           

x 20         17.66 17.74 17.8 17.82 17.8 17.74 17.66         

 

 

Run 18, Fd 38.59 

Temperature across the plume path line � C, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 5             20.8 21.5 20.8             

x 10           19.2 19.5 19.7 19.5 19.2           

x 15           18.38 18.4 18.4 18.4 18.38           

x 20         17.75 17.78 17.8 17.8 17.8 17.78 17.75         

Temperature across the plume path line � C, model 

x 5             20.6 21.79 20.6             

x 10           19.02 19.63 19.87 19.63 19.02           

x 15           18.45 18.65 18.72 18.65 18.45           

x 20         17.81 17.93 18 18.03 18 17.93 17.81         

 

 

Run 20, Fd 31.51 

Temperature across the plume path line � C, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 5             21.8 22.6 21.8             

x 10           20 20.7 21.1 20.7 20           

x 15         18.9 19.2 19.65 19.8 19.65 19.2 18.9         

x 20       18.15 18.31 18.6 18.9 19 18.9 18.6 18.31 18.15       

Temperature across the plume path line � C, model 

x 5             21.43 22.48 21.43             

x 10           19.88 20.51 20.74 20.51 19.88           

x 15         18.93 19.26 19.49 19.56 19.49 19.26 18.93         

x 20       18.3 18.48 18.63 18.72 18.76 18.72 18.63 18.48 18.3       
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Run 23, Fd 16.29 

Temperature across the plume path line � C, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 5             19.5 20 19.5             

x 10             17.8 18.1 17.8             

x 15     17.1 17.2 17.3 17.4 17.5 17.5 17.5 17.4 17.3 17.2 17.1     

x 20     17 17.03 17.05 17.1 17.2 17.2 17.2 17.1 17.05 17.03 17     

Temperature across the plume path line � C, model 

x 5           18.39 19.28 19.69 19.28 18.39           

x 10       17.42 17.59 17.75 17.86 17.91 17.86 17.75 17.59 17.42       

x 15     17.17 17.21 17.25 17.28 17.3 17.3 17.3 17.28 17.25 17.21 17.17     

x 20   17.04 17.06 17.07 17.08 17.09 17.1 17.1 17.1 17.09 17.08 17.07 17.06 17.04   
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APPENDIX 10: EXPERIMENTAL AND PREDICTED VELOCITY 

ALONG AND ACROSS PLUME PATH LINE 

 

(Velocity along plume path line) 

Velocity along plume path line cm/s, experiment 

Fd 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 

Fd14.39 19.00 15.7 13.2 10.8 9.13 7.8 6.9 6 5.5             

Fd41.48 34.00 29 25 21 17.5 15 12.45 11 9.4 8 6.95 6.1 5.55     

Fd38.59 45.00 37 29.25 24 19.05 16 12.45 10.5 8.5             

Fd31.51 45.00 40 34.5 30 26.45 23 20 17 15.15 13 11.45 10 8.85 7.55 6.4 

Fd16.29 19.00 15.3 12.1 9.8 7.8 6.3 5 4 3.2             

 

Velocity along plume path line cm/s, model 

Fd 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 

Fd14.39 19 16.14 13.71 11.64 9.89 8.4 7.13 6.06 5.15             

Fd41.48 34 29.31 25.27 21.78 18.78 16.19 13.95 12.03 10.37 8.94 7.71 6.64 5.73     

Fd38.59 45 35.98 28.77 23 18.39 14.7 11.76 9.4 7.52 6           

Fd31.51 45 38.7 33.29 28.64 24.63 21.18 18.22 15.67 13.48 11.59 9.97 8.58 7.38 6.35 5.46 

Fd16.29 19 14.84 11.59 9.05 7.07 5.52 4.31 3.37 2.63             

 

 

(Velocity across plume path line) 

Run 4, Fd 14.39 

Velocity across the plume path line cm/s, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 2.5             8.5 15.7 8.5             

x 5             11.25 13.2 11.25             

x 20         4.5 4.75 5 5.5 5 4.75 4.5         

Velocity across the plume path line cm/s, model 

x 2.5             8.84 16.14 8.84             

x 5           6.54 11.39 13.71 11.39 6.54           

x 20   2.94 3.49 4.01 4.47 4.83 5.1 5.15 5.1 4.83 4.47 4.01 3.49 2.94   
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Run 6, Fd 41.48 

Velocity across the plume path line cm/s, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 5             16.25 25 16.25             

x 10             16.15 17.5 16.15             

x 30         5.15 5.25 5.5 5.55 5.5 5.25 5.15         

Velocity across the plume path line cm/s, model 

x 5             16.53 25.27 16.53             

x 10             16.36 18.78 16.36             

x 30 2.19 2.83 3.51 4.19 4.8 5.3 5.62 5.73 5.62 5.3 4.8 4.19 3.51 2.83 2.19 

 

 

 

Run 18, Fd 38.59 

Velocity across the plume path line cm/s, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x2. 5                               

x 5             16.5 29.25 16.5             

x 22.5           5 5.5 7.05 5.5 5           

Velocity across the plume path line cm/s, model 

x2. 5                               

x 5             16.64 28.77 16.64             

x 22.5         4.15 5.1 5.77 6 5.77 5.1 4.15         

 

 

Run 20, Fd 31.51 

Velocity across the plume path line cm/s, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 5             22.5 34.5 22.5             

x 10           15 22 26.45 22 15           

x 35           5.2 5.5 6.4 5.5 5.2           

Velocity across the plume path line cm/s, model 

x 5             22.19 33.29 22.19             

x 10           14.95 21.74 24.63 21.74 14.95           

x 35 2.94 3.47 3.98 4.46 4.87 5.19 5.39 5.46 5.39 5.19 4.87 4.46 3.98 3.47 2.94 
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Run 23, Fd 16.29 

Velocity across the plume path line cm/s, experiment 

  -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 

x 2.5             5.25 15.3 5.25             

x 5           3.5 8.5 12.1 8.5 3.5           

x 20           2.5 2.7 3.2 2.7 2.5           

Velocity across the plume path line cm/s, model 

x 2.5             5.2 14.84 5.2             

x 5           3.3 8.47 11.59 8.47 3.3           

x 20 0.66 0.95 1.3 1.68 2.04 2.35 2.56 2.63 2.56 2.35 2.04 1.68 1.3 0.95 0.66 
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APPENDIX 11: CANAL SITES AND PREDICTED PATH LINE DATA 

 

 (Canalside West data) 

 

Canal depth H = 1.1m 

Discharge pipe depth z� = 0.5 
Discharge pipe diameter  D� = 
0.15m 

Discharge temperature T� = 19˚C 

Discharge velocity U� = 0.91 

Canal ambient temperature Ta = 17.5 

Densimetric Froude number Fd = 

46.8 

Length scale Lм = (π/4)		²	D	 Fd 
= 6.6 

 

Temperature along the plume path line �C, Canalside West 

  0 0.5 1 1.5 2 2.5 

Canal measured data 19.0 18.5 18.3 18.1 18.0 18.0 

Theoretical model data 19.0 18.6 18.4 18.2 18.08 17.9 

 

Velocity along the plume path line m/s, Canalside West 

  0 0.5 1 1.5 2 2.5 

Canal measured data 0.91 0.66 0.5 0.4 0.3 0.18 

Theoretical model data 0.91 0.71 0.56 0.44 0.35 0.28 

 

Temperature across the plume path line ° C, experiment 

  -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

x 0.5     18.3 18.45 18.5 18.45 18.3     

x 1   18.10 18.3 18.3 18.3 18.3 18.3 18.1   

x 1.5   18.1 18.1 18.1 18.1 18.1 18.1 18.1   

x 2 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 

Temperature across the plume path line ° C, model 

x 0.5 17.66 17.89 18.22 18.54 18.6 18.54 18.22 17.89 17.66 

x 1 17.97 18.14 18.3 18.4 18.4 18.4 18.3 28.14 17.97 

x 1.5 18 18.11 18.18 18.2 18.2 18.2 18.18 18.11 18 

x 2 17.98 18.02 18.05 18.08 18.08 18.08 18.05 18.02 17.98 
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Velocity across the plume path line m/s, experiment 

  -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

x 0.5       0.6 0.66 0.6       

x 1     0.43 0.5 0.5 0.5 0.43     

x 1.5   0.3 0.35 0.4 0.4 0.4 0.35 0.3   

x 2 0.19 0.24 0.26 0.3 0.3 0.3 0.26 0.24 0.19 

Velocity across the plume path line m/s, model 

x 0.5       0.57 0.71 0.57       

x 1     0.41 0.52 0.56 0.52 0.41     

x 1.5   0.3 0.38 0.43 0.44 0.43 0.38 0.3   

x 2 0.24 0.28 0.32 0.34 0.35 0.34 0.32 0.28 0.23 

 

 

 (Lockside data) 

Canal depth H =  1.1m 

Discharge pipe depth z� = 0.45 

Discharge pipe diameter  D� = 0.15m 

Discharge temperature T� = 22˚C 

Discharge velocity U� = 1.22 

Canal ambient temperature Ta = 17.5 

Densimetric Froude number Fd = 33.34 

Length scale Lм = (π/4)		²	D	 Fd = 4.71 
 

 

 

 

 

Temperature along the plume path line �C, Lockside 

  0 0.5 1 1.5 2 2.5 

Canal measured data 22 20.7 19.8 19.2 18.7 18.1 

Theoretical model data 22.0 20.9 20.1 19.5 19 18.7 

 

 

Velocity along the plume path line m/s, Lockside 

  0 0.5 1 1.5 2 2.5 

Canal measured data 1.22 0.89 0.71 0.51 0.4 0.24 

Theoretical model data 1.22 0.96 0.75 0.59 0.47 0.37 
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Temperature across the plume path line ° C, experiment 

  -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

x 0.5     20 20.5 20.7 20.5 20     

x 1   19.4 19.6 19.8 19.8 19.8 19.6 19.4   

x 1.5 19 19.1 19.2 19.2 19.2 19.2 19.2 19.1 19 

x 2 18.6 18.6 18.7 18.7 18.7 18.7 18.7 18.6 18.6 

Temperature across the plume path line ° C, model 

x 0.5     19.69 20.59 20.9 20.59 19.69     

x 1   19.4 19.8 20 20.1 20 19.8 19.4   

x 1.5 19.05 19.26 19.42 19.5 19.5 19.5 19.42 19.26 19.05 

x 2 18.8 18.9 19 19 19 19 19 18.9 18.8 

 

 

Velocity across the plume path line m/s, experiment 

  -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

x 0.5       0.8 0.89 0.8       

x 1   0.45 0.55 0.65 0.71 0.65 0.55 0.45   

x 1.5 0.3 0.4 0.48 0.5 0.51 0.5 0.48 0.4 0.3 

x 2 0.3 0.35 0.38 0.4 0.4 0.4 0.38 0.35 0.3 

Velocity across the plume path line m/s, model 

x 0.5       0.77 0.96 0.77       

x 1   0.4 0.57 0.7 0.75 0.7 0.57 0.4   

x 1.5 0.34 0.43 0.52 0.57 0.59 0.57 0.52 0.43 0.34 

x 2 0.34 0.39 0.43 0.46 0.47 0.46 0.43 0.39 0.34 

 

 

 

 

 (Mailbox data) 

Canal depth H = 1.4m 

Discharge pipe depth z� = 0.0.925 

Discharge pipe diameter  D� = 0.35m 

Discharge temperature T� = 20˚C 

Discharge velocity U� = 0.6m/s 

Canal ambient temperature Ta = 17.5°C 

Densimetric Froude number Fd = 13.55 

Length scale Lм = (π/4)		²	D	 Fd = 4.46 
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Temperature along the plume path line �C, Mailbox 

  0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 

Canal measured data 20 19.5 Unknown  Unknown  19.1 19 18.9 18.8 18.7 

Theoretical model data 20.0 19.7 19.53 19.33 19.15 18.9 18.8 18.7 18.5 

 

Velocity along the plume straight centreline m/s, Mailbox 

  0 0.5 1 1.5 2 2.5 3 

Canal measured data 0.6 0.4 0.32 0.26 0.22 0.2 0.17 

Theoretical model data 0.6 0.54 0.48 0.44 0.39 0.35 0.32 

 

Temperature across the plume path line ° C, experiment 

  -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

x 0.4     18.7 19.3 19.5 19.3 18.7     

x 1.6 18.9 19 19.1 19.1 19.1 19.1 19.1 19 18.9 

x 2.4 18.7 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.7 

x 3.2 18.6 18.6 18.6 18.7 18.7 18.7 18.6 18.6 18.6 

Temperature across the plume path line ° C, model 

x 0.4 18.1 18.56 19.11 19.57 19.7 19.57 19.11 18.56 18.1 

x 1.6 18.95 19.04 19.1 19.14 19.15 19.14 19.1 19.04 18.95 

x 2.4 18.76 18.8 18.82 18.84 18.8 18.84 18.82 18.8 18.76 

x 3.2 18.55 18.57 18.58 18.59 18.59 18.59 18.58 18.57 18.55 

 

Velocity across the plume straight centreline m/s, experiment 

  -1 -0.5 0 0.5 1 

x 0.5 0.32   0.4   0.32 

x 1 0.25   0.32   0.25 

Velocity across the plume straight centreline m/s, model 

x 0.5 0.34 0.48 0.54 0.48 0.34 

x 1 0.42 0.47 0.48 0.47 0.42 

 

 

 

 

 

 

 

 

 


