Computing and Library Services - delivering an inspiring information environment

New Tacrine−Huperzine A Hybrids (Huprines): Highly Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest for the Treatment of Alzheimer's Disease

Camps, Pelayo, El Achab, Rachid, Morral-Cardoner, Jordi, Muñoz-Torrero, Diego, Badia, Albert, Baños, Josep Eladi, Vivas, Nuria María, Barril, Xavier, Orozco, Modesto and Luque, Francisco Javier (2000) New Tacrine−Huperzine A Hybrids (Huprines): Highly Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 43 (24). pp. 4657-4666. ISSN 0022-2623

PDF - Published Version
Download (114kB) | Preview


    Several new 12-amino-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline derivatives (tacrine−huperzine A hybrids, huprines) have been synthesized and tested as acetylcholinesterase (AChE) inhibitors. All of the new compounds contain either a methyl or ethyl group at position 9 and one or two (chloro, fluoro, or methyl) substituents at positions 1, 2, or 3. Among the monosubstituted derivatives, the more active are those substituted at position 3, their activity following the order 3-chloro > 3-fluoro > 3-methyl > 3-hydrogen. For the 1,3-difluoro and 1,3-dimethyl derivatives, the effect of the substituents is roughly additive. No significant differences were observed for the inhibitory activity of 9-methyl vs 9-ethyl derivatives mono- or disubstituted at positions 1 and/or 3. The levorotatory enantiomers of these hybrid compounds are much more active (eutomers) than the dextrorotatory forms (distomers) as AChE inhibitors. Compounds rac-20, (−)-20, rac-26, (−)-26, rac-30, (−)-30, and rac-31 showed human AChE inhibitory activities up to 28.5-fold higher than for the corresponding bovine enzyme. Also, rac-19, (−)-20, (−)-30, and rac-31 were very selective for human AChE vs butyrylcholinesterase (BChE), the AChE inhibitory activities being 438−871-fold higher than for BChE. Several hybrid compounds, specially (−)-20 and (−)-30, exhibited tight-binding character, showing higher activity after incubation of the enzyme with the inhibitor than without incubation, though the reversible nature of the enzyme−inhibitor interaction was demonstrated by dialysis. The results of the ex vivo experiments also supported the tight-binding character of compounds (−)-20 and (−)-30 and showed their ability to cross the blood−brain barrier. Molecular modeling simulations of the AChE−inhibitor complex provided a basis to explain the differences in inhibitory activity of these compounds

    Item Type: Article
    Additional Information: Reprinted with permission from {Journal of Medicinal Chemistry}. Copyright {2000} American Chemical Society.
    Subjects: Q Science > Q Science (General)
    Q Science > QD Chemistry
    Schools: School of Applied Sciences
    Related URLs:
    Depositing User: Sara Taylor
    Date Deposited: 30 Jun 2011 09:45
    Last Modified: 30 Jun 2011 09:45


    Downloads per month over past year

    Repository Staff Only: item control page

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©