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ABSTRACT   

The assessment of surface finish has become increasingly important in the field of precision engineering. Optical 

interferometry has been widely used for surface measurement due to the advantages of non-contact and high accuracy 

interrogation. In spite of the 2π phase ambiguity that can limit the measurement scale in monochromatic interferometry, 

other optical interferomtry have succeeded to overcome this problem and to measure both rough and smooth surfaces 

such as white light interferometry and wavelength scanning interferometry (WSI). The WSI can be used to measure large 

discontinuous surface profiles by producing phase shifts without any mechanical scanning process. Where the WSI 

produces the phase shifts by altering the wavelength of a broadband light source and capturing the produced 

interferograms by a CCD. This paper introduces an optical setup and operation principle of a WSI that used a halogen 

white light as a broadband illumination source and an acousto-optic tunable filter (AOTF) as a wavelength scanning 

device. This setup can provide a wide scan range in the visible region. The scanned range is being operated from 682.8 

nm to 552.8nm and the number of captured frames is 128. Furthermore, the obtained interferograms from a Linnik 

interferometer have been analyzed by two methods, Fast Fourier Transform and Convolution. A mathematical 

description of both methods is presented then a comparison in results accuracy is made between them. The Areal 

measurement of a standard 4.707µm step height sample shows that FFT and convolution methods could provide a 

nanometer measurement resolution for the surface finish inspection.   
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1. INTRODUCTION  

In developed economies the manufacture of high added value critical components is rapidly shifting to the design and 

fabrication of micro and nano structured and freeform surfaces
1,2

. The highly polished and ultra-precision structured 

surfaces are widely used in industry such as silicon wafers, hard disk drives, MEMS/NEMS and micro-moulding 

industries. However, many of these manufactured items suffer from scrap rates reach to 50-70%
3
. Therefore, a demand 

of inspection ultra precision surfaces is vastly emerged. Optical interferometry has been widely explored for surface 

measurement due to the advantages of non-contact, high measurement resolution and high throughput inspection. 

Various interferometry methods of surface inspection have been developed for different applications such as phase shift 

interferometry, white light interferometry and wavelength scanning interferometry (WSI)
4
. The phase shift 

interferometry is typically used for two dimensional profiles, areal topographies, and for measurements that requires high 

resolution and throughput. The main limitation of this type of interferometry is the phase ambiguity that occurs when 

measuring discontinuous surfaces with heights exceed a half of the illumination wavelength. Therefore, the application 

of this kind of interferomtry is limited to non rough and highly polished surfaces inspections
5
. This limitation was 

overcome by developing a white light interferometry. Measuring the coherence of white light is used to indicate the zero 

optical path difference position (i.e OPD=0) for each measurement point
6
. Typically, the coherence measurement is 

measured by performing mechanical scanning using a piezo-electric transducer. Nevertheless, the need to perform a 

mechanical scanning of a heavy probe head or the specimen stage limits the measurement speed. In addition, the 

mechanical scanning might cause measurement error due to some of piezo-mechanical performance such as hysteresis 

and creep. An alternative method of measuring large discontinuous surfaces, without mechanical scanning, was 

developed by using wavelength scanning technique. 

Wavelength scanning interferometry (WSI) using a two dimensional CCD detector has been reported by many 

researchers worldwide in the field of areal surface measurement
7
. Opposed to white light interferometry, the WSI 

induced phase shifts without any mechanical scanning technique. The phase shifts is produced by varying the 



 

 
 

 

wavelength of the illumination source. Thus, the absolute optical path difference can be measured without 2π phase 

ambiguity. In this paper the WSI system is used to measure a large discontinuous step sample. The scanning of 

wavelength is achieved by using acousto optic tunable filter (AOTF) placed after a broadband light. Two methods are 

used to evaluate the obtained interferograms, which are the Fourier Transform and convolution. Analyzing the captured 

data with Fourier Transform is based on extracting the slop of the phase shifts from the intensity pattern of each pixel. 

The convolution analysis is based on determining peaks of the obtained sinusoidal interferograms with respect to the 

scanned wavelength range. Areal measurements of 4.707µm step height sample are demonstrated in this paper.    

 

2. WAVELENGTH SCANNING INTERFEROMETRY SYSTEM 

The interferometry system, shown in figure 1, is composed of a Linnik interferometer illuminated by a halogen white 

light source, acousto-optic tunable filtering and interface cards (i.e. DAQ and frame grabber). The interface cards are 

used to communicate the PC with the optical environment. The AOTF is key feature of this experimental setup. It is 

placed after a halogen white to select a specific wavelength and pass to a Linnik interferometer. The wavelength 

selection depends on the AOTF driving frequency. Thus by changing the driving frequency, wavelength scanning 

process is achieved. In this experiment, the wavelength is scanned from 682.8nm to 552.8nm with less than 1.5nm 

bandwidth resolution for each wavelength.  

Different wavelengths of light pass through the AOTF in sequence so that a series of interferograms are detected by the 

CCD. The absolute optical path difference can be calculated through analyzing these interferograms. During wavelength 

scanning process, 128 frames are captured by a CCD hence each frame has a specific wavelength. Every pixel in a frame 

represents a specific point upon the surface of a measured sample. Thus by gathering the pixels of a specific sample 

point, a sinusoidal intensity distribution is obtained as shown in figure 2.a. Each point in this distribution has it own 

scanned wavelength.  Equation 1 describes the mathematical expression of the intensity distribution
8
. 
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I is an intensity value captured by a CCD pixel. i is the iteration of the frame number (1,2,..,n). x and y are the pixel 

numbers in horizontal and vertical directions of the CCD respectively. a and b are constant values depend on the light 

intensity values that reflect from interferometer arms. φ is the phase shift caused by altering wavelength of the broadband 

light. The phase of the intensity distribution depends on the wavelength and the optical path difference (i.e. height of the 

measured sample), as described in equation 2. 
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λi is the scanning wavelength and h is the sample step height. A 4.707µm step height calibrated sample is measured by 

the proposed system to verify the analysis methods. Convolution and FFT algorithms have been used to extract the point 

elevation from the intensity distribution. 

 

Figure 1 WSI setup 



 

 
 

 

3. MATHEMATICAL DESCRIPTION 

3.1 3.1 Fourier Transform Analysis Method 

The captured frames obtained from WSI, are analyzed using FFT algorithm. The intensity values of each pixel need to be 

gathered and analyzed individually from other pixels. The interference intensity pattern of one pixel during the 

wavelength scanning process is shown in figure 2.a. The sinusoidal pattern in this figure suffers from slow change in the 

intensity average value. This change might be caused by the CCD response to the scanned wavelength range. The 

variation in the average intensity needs to be compensated before FFT take place as stated by Takeda in 1982
9
. The 

compensation is achieved by dividing the interference intensity pattern over the background intensity distribution along 

the scanned wavelength range. The compensation result is shown in figure 2.b. 

The mathematical expression of figure 2.b can be rewritten in form of equation 3 instead of equation 1 for the 

convenience of explanation. 
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Equation 3 can be simplified by considering the following notations. 
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FFT is applied to equation 4 to find the spectrum of the intensity distribution. The spectrum of the FFT output contains 

three main terms as stated in equation 5. The first term is constant amplitude that relates to the light intensity in each 

interferometer arm, the second and third terms are related to the fringe frequency recorded by the pixel. The purpose of 

FFT is to distinguish between the useful information which is represented by the phase change (i.e. c or c* term) and the 

unwanted information of constant amplitude (i.e. A). The fo is a spatial frequency corresponding to the wavelength 

scanning and it is function of the optical path difference. 

)f(fC)fC(fA(f)]FFT[I o
*

oxy ++−+=       (5) 

The unwanted spectrum A and C* are filtered out and the inverse FFT is applied to equation 5 to reconstruct the c value 

in equation 4. Then, natural logarithm is applied to separate the phase φ from the unwanted amplitude variation b, as 

illustrated in equation 6. 

ϕϕ
iB]

2

1
[ln]

i
e

2

1
ln[B +=        (6) 

The phase, shown in figure 2.c, is extracted from the imaginary part of equation 11. Since the calculated phase is limited 

to range of –π to π, the phase distribution is suffers from discontinuities. These discontinuities are corrected by adding 2π 

at the discontinuous parts as shown in figure 2.d. Finally, the optical path difference (OPD) is calculated from the slop of 

phase distribution using equation 7.  
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Where ∆φ is the change in phase between any two points in figure 3.b. λm and λn are the corresponding wavelengths at 

phase difference (∆φ).  
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   (c)       (d) 

Figure 2 Inference intensity Analysis (a) Interference intensity distribution (b) Corrected Interference intensity distribution (c) Phase 

distribution with discontinuities (d) Corrected phase distribution. 

 

3.2 Convolution Analysis Method 

The principle of convolution method is based on determining the positions of peaks or valleys obtained from the 

sinusoidal intensity values captured by one of the CCD pixels that shown in figure 2.a. The positions of peaks or valleys 

are determined with respect to the scanned wavelength range. In this paper, the determinations of peaks positions are 

considered to obtain the optical path difference. Applying convolution analysis to the intensity distribution is equivalent 

to calculate the first derivate of the distribution and band pass filtering of the constant component, slow variation of the 

background intensity and high frequency noise contained in the distribution. The convolution process can be described 

by equation 8.  

∫ −= 2B
0
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Where I(x) is the interference intensity distribution, T is the convolution shift parameter and f(T) is a function is set with 

a square criteria to achieve the convolution purposes.  The f(t) criteria is explained in equation 9. 
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The 2B value is the width of the function f(t) which is approximately about 74% of the intensity distribution period as 

described by Snyder in 1980
10

. The convolution process produces a sinusoidal wave which intersects the propagation 

axis at the same peaks and valleys positions of the convolved intensity pattern as shown in figure 3. Thus, by monitoring 

the change in the sign of the produced convolution wave, the peaks positions can be determined when the intensity 

distribution is changed from negative to positive value. 

Mathematically, the phase change between two successive peaks is 2π. Hence by subtracting phases at two specific 

peaks, the optical path difference can be obtained as declared in equation 10. 
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Where σ1=1/λ1, σ2=1/λ2 and (λ1 & λ2) are the wavelengths at the selected peaks. To optimize the result obtained from 

convolution, Schwider et al. in 19946 reported that the peaks position can be estimated, from the convolution result, 
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more precisely by using linear interpolation method as stated in equation 11 and the optical path difference calculation, 

can be optimized by using least –squares fitting approach, hence equation 12 is obtained.  
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Where r’ is the actual position of a peak, I’(r) is a negative sign magnitude of convolution output that followed by 

positive sign value, I’(r+1) is a positive sign magnitude of convolution output that led by negative sign value. Equation 7 

can be used to calculate the sample optical path difference. 
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Where j is the iteration of peaks or valleys (i.e. 0, 1, 2, 3,…,n),n is the number of peaks and σj=1/λj is the wave number 

and λj are the wavelengths of the corresponding peak. 

 

 
 
 

 
 
 
 

 
Figure 3 The convolution output of figure 2.a and filter of equation 9 

 

4. RESULT AND D ISCUSSION 

The WSI system is used to measure a standard step height 4.707µm. The captured frames are analyzed by the described 

FFT and convolution methods. The analysis procedures are applied to all of CCD pixels in order to obtain areal 

measurements. Figure 4 and 5 show the evaluation results obtained from FFT and convolution. Both methods measured 

the sample with nanometer accuracy.  Nevertheless, there are some aspects should be considered for each method. First, 

the FFT needs to pre-compensate for the slow intensity background variation before evaluating the data. Thus, the 

measurement throughput could be reduced. In contrast, the convolution needs no pre-compensation for background 

intensity variation because the described filter form can average the variation to zero during the convolution process. 

However, the FFT shows less susceptibility to errors that produced from false presentation of filtering criteria than the 

convolution, since the convolution filter width needs to be approximately 74% of the interference period. Figure 6 shows 

the convolution result when the filter width equals to 62% and 85% from the interference period.  

 

 

 

 

 

 

 

 

 



 

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)       (b) 

Figure 4 Areal measurement of 4.707µm sample (a) using FFT (b) using convolution 
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(b) 

Figure 5 2D profile of 4.707µm sample (a) using FFT (b) using convolution 

 

 

 

 



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)       (b) 

Figure 6 Convolution Result for different filters width (a) filter width=62% of the interference period (b) filter width=85% of the 

interference period 

5. CONCLUSION 

The WSI system can be used for areal measurements of discontinues profiles surfaces without phase ambiguity. The 

AOTF provides a fast wavelength scanning technique to produce phase shift information.  The produced phase shift can 

be evaluated by the FFT or convolution methods. Both of methods provide results with nanometer resolution. The FFT 

method is susceptible to errors that produced form background intensity variation while the convolution is susceptible to 

errors that produced form false presentation of convolution filter criteria.  
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