Search:
Computing and Library Services - delivering an inspiring information environment

Order and disorder in the domain organization of the plasmid partition protein KorB

Rajasekar, K., Tul Muntaha, S., Tame, J. R. H., Kommareddy, S., Morris, Gordon, Wharton, C. W., Thomas, C. M., White, S. A., Hyde, E. I. and Scott, D. J. (2010) Order and disorder in the domain organization of the plasmid partition protein KorB. Journal of Biological Chemistry, 285 (20). pp. 15440-15449. ISSN 0021-9258

Metadata only available from this repository.

Abstract

The plasmid partition protein KorB has a dual role: it is essential for the correct segregation of the low copy number broad host range RK2 plasmid while also being an important regulator of transcription. KorB belongs to the ParB family of proteins, and partitioning in RK2 has been studied as a simplified model of bacterial chromosome segregation. Structural information on full-length ParB proteins is limited, mainly due to the inability to grow crystals suitable for diffraction studies. We show, using CD and NMR, that KorB has regions of significant intrinsic disorder and hence it adopts a multiplicity of conformations in solution. The biophysical data are consistent with bioinformatic predictions based on the amino acid sequence that the N-terminal region and also the region between the central DNA-binding domain and the C-terminal dimerization domain are intrinsically disordered. We have used small angle x-ray scattering data to determine the ensemble of solution conformations for KorB and selected deletion mutants, based on models of the known domain structures. This conformational range of KorB is likely to be biologically required for DNA partitioning and for binding to a diverse set of partner proteins. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Item Type: Article
Uncontrolled Keywords: Amino acid sequence Bacterial chromosomes Biophysical data Copy number Deletion mutants Diffraction studies Dimerization domain DNA-binding domain Domain structure Dual role Intrinsic disorder N-terminals Order and disorder Simplified models Small angle X-ray scattering Solution conformations Structural information Amino acids Bioinformatics Conformations Crystals DNA Genes Microbiology Organic acids Segregation (metallography) Proteins bacterial protein protein KorB unclassified drug article carboxy terminal sequence chromosome segregation circular dichroism controlled study crystal structure denaturation dimerization hydrophobicity nonhuman nuclear magnetic resonance plasmid priority journal protein analysis protein conformation protein DNA binding protein domain protein function protein structure structure analysis Thermus thermophilus ultracentrifugation Bacterial Proteins Molecular Sequence Data Nuclear Magnetic Resonance, Biomolecular Plasmids Sequence Homology, Amino Acid Bacteria (microorganisms)
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:
References:

Cited By (since 1996): 1
Export Date: 12 May 2011
Source: Scopus
CODEN: JBCHA
doi: 10.1074/jbc.M109.096099
PubMed ID: 20200158
Language of Original Document: English
Correspondence Address: Hyde, E. I.; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; email: e.i.hyde@bham.ac.uk
Chemicals/CAS: Bacterial Proteins; KorB protein, Plasmid RK2
References: Bignell, C., Thomas, C.M., (2001) J. Biotechnol., 91, pp. 1-34; Kostelidou, K., Thomas, C.M., (2000) J. Mol. Biol., 295, pp. 411-422; Zatyka, M., Bingle, L., Jones, A.C., Thomas, C.M., (2001) J. Bacteriol., 183, pp. 1022-1031; Bhattacharyya, A., Figurski, D.H., (2001) J. Mol. Biol., 310, pp. 51-67; Chiu, C.M., Manzoor, S.E., Batt, S.M., Muntaha, S., Bingle, L.E., Thomas, C.M., (2008) Plasmid, 59, pp. 163-175; Bingle, L.E., Macartney, D.P., Fantozzi, A., Manzoor, S.E., Thomas, C.M., (2005) J. Mol. Biol., 349, pp. 302-316; Lukaszewicz, M., Kostelidou, K., Bartosik, A.A., Cooke, G.D., Thomas, C.M., Jagura-Burdzy, G., (2002) Nucleic Acids Res., 30, pp. 1046-1055; Kostelidou, K., Jones, A.C., Thomas, C.M., (1999) J. Mol. Biol., 289, pp. 211-221; Jagura-Burdzy, G., Macartney, D.P., Zatyka, M., Cunliffe, L., Cooke, D., Huggins, C., Westblade, L., Thomas, C.M., (1999) Mol. Microbiol., 32, pp. 519-532; Williams, D.R., Macartney, D.P., Thomas, C.M., (1998) Microbiology, 144, pp. 3369-3378; Batt, S.M., Bingle, L.E., Dafforn, T.R., Thomas, C.M., (2009) J. Mol. Biol., 385, pp. 1361-1374; Macartney, D.P., Williams, D.R., Stafford, T., Thomas, C.M., (1997) Microbiology, 143, pp. 2167-2177; Jagura-Burdzy, G., Thomas, C.M., (1997) J. Mol. Biol., 265, pp. 507-518; Zatyka, M., Jagura-Burdzy, G., Thomas, C.M., (1994) Microbiology, 140, pp. 2981-2990; Pansegrau, W., Lanka, E., Barth, P.T., Figurski, D.H., Guiney, D.G., Haas, D., Helinski, D.R., Thomas, C.M., (1994) J. Mol. Biol., 239, pp. 623-663; Jagura-Burdzy, G., Kostelidou, K., Pole, J., Khare, D., Jones, A., Williams, D.R., Thomas, C.M., (1999) J. Bacteriol., 181, pp. 2807-2815; Williams, D.R., Motallebi-Veshareh, M., Thomas, C.M., (1993) Nucleic Acids Res., 21, pp. 1141-1148; Delbrück, H., Ziegelin, G., Lanka, E., Heinemann, U., (2002) J. Biol. Chem., 277, pp. 4191-4198; Khare, D., Ziegelin, G., Lanka, E., Heinemann, U., (2004) Nat. Struct. Mol. Biol., 11, pp. 656-663; Leonard, T.A., Butler, P.J., Löwe, J., (2004) Mol. Microbiol., 53, pp. 419-432; Sreerama, N., Woody, R.W., (2000) Anal. Biochem., 287, pp. 252-260; Sreerama, N., Venyaminov, S.Y., Woody, R.W., (2000) Anal. Biochem., 287, pp. 243-251; Whitmore, L., Wallace, B.A., (2008) Biopolymers, 89, pp. 392-400; Whitmore, L., Wallace, B.A., (2004) Nucleic Acids Res., 32, pp. W668-673; Scott, D.J., Harding, S.E., Rowe, A.J., (2005) Analytical Ultracentrifugation: Techniques and Methods, pp. 1-26. , Royal Society of Chemistry, Cambridge, United Kingdom; Schuck, P., (2000) Biophys. J., 78, pp. 1606-1619; Lund, O., Nielsen, M., Lundegaard, C., Worning, P., CPHmodels: 3M, a computer program to extract 3D models (2002) CASP5 Conference; Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H., Svergun, D.I., (2003) J. Appl. Crystallogr., 36, pp. 1277-1282; Svergun, D., (1993) J. Appl. Crystallogr., 26, pp. 258-267; Svergun, D.I., Petoukhov, M.V., Koch, M.H., (2001) Biophys. J., 80, pp. 2946-2953; Bernadó, P., Mylonas, E., Petoukhov, M.V., Blackledge, M., Svergun, D.I., (2007) J. Am Chem. Soc., 129, pp. 5656-5664; Potterton, E., McNicholas, S., Krissinel, E., Cowtan, K., Noble, M., (2002) Acta Crystallogr. D. Biol. Crystallogr., 58, pp. 1955-1957; Svergun, D., Barberato, C., Koch, M.H., (1995) J. Appl. Crystallogr., 28, pp. 768-773; Sickmeier, M., Hamilton, J.A., Legall, T., Vacic, V., Cortese, M.S., Tantos, A., Szabo, B., Dunker, A.K., (2007) Nucleic Acids Res., 35, pp. D786-793; Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., Jones, D.T., (2004) J. Mol. Biol., 337, pp. 635-645; Harding, S.E., (1997) Prog. Biophys. Mol. Biol., 68, pp. 207-262; Schumacher, M.A., Mansoor, A., Funnell, B.E., (2007) J. Biol. Chem., 282, pp. 10456-10464; Chenal, A., Guijarro, J.I., Raynal, B., Delepierre, M., Ladant, D., (2009) J. Biol. Chem., 284, pp. 1781-1789; Petoukhov, M.V., Svergun, D.I., (2007) Curr. Opin. Struct. Biol., 17, pp. 562-571; Receveur-Bréchot, V., Bourhis, J.M., Uversky, V.N., Canard, B., Longhi, S., (2006) Proteins, 62, pp. 24-45; Bernado, P., (2010) Eur. Biophys. J., , DOI: 10.1007/s00249-00009-00549-00243; Schumacher, M.A., Funnell, B.E., (2005) Nature, 438, pp. 516-519; Szilágyi, A., Györffy, D., Závodszky, P., (2008) Biophys. J., 95, pp. 1612-1626; Uversky, V.N., (2002) Protein Sci., 11, pp. 739-756; Haynes, C., Oldfield, C.J., Ji, F., Klitgord, N., Cusick, M.E., Radivojac, P., Uversky, V.N., Iakoucheva, L.M., (2006) PLoS Comput. Biol., 2, pp. e100

Depositing User: Gordon Morris
Date Deposited: 18 May 2011 12:47
Last Modified: 18 May 2011 12:47
URI: http://eprints.hud.ac.uk/id/eprint/10470

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©