Search:
Computing and Library Services - delivering an inspiring information environment

Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis

Morris, Gordon, de al Torre, J. G., Ortega, A., Castile, J., Smith, A. and Harding, S. E. (2008) Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis. Food Hydrocolloids, 22 (8). pp. 1435-1442. ISSN 0268-005X

[img]
Preview
PDF - Accepted Version
Download (603kB) | Preview

    Abstract

    The flexibility/rigidity of pectins plays an important part in their structure-function relationship and therefore on their commercial applications in the food and biomedical industries. Earlier studies based on sedimentation analysis in the ultracentrifuge have focused on molecular weight distributions and qualitative and semi-quantitative descriptions based on power law and Wales-van Holde treatments of conformation in terms of "extended" conformations [Harding, S. E., Berth, G., Ball, A., Mitchell, J.R., & Garcìa de la Torre, J. (1991). The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydrate Polymers, 168, 1-15; Morris, G. A., Foster, T. J., & Harding, S.E. (2000). The effect of degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocolloids, 14, 227-235]. In the present study, four pectins of low degree of esterification 17-27% and one of high degree of esterification (70%) were characterised in aqueous solution (0.1 M NaCl) in terms of intrinsic viscosity [η], sedimentation coefficient (s°20,w) and weight average molar mass (Mw). Solution conformation/flexibility was estimated qualitatively using the conformation zoning method [Pavlov, G.M., Rowe, A.J., & Harding, S.E. (1997). Conformation zoning of large molecules using the analytical ultracentrifuge. Trends in Analytical Chemistry, 16, 401-405] and quantitatively (persistence length Lp) using the traditional Bohdanecky and Yamakawa-Fujii relations combined together by minimisation of a target function. Sedimentation conformation zoning showed an extended coil (Type C) conformation and persistence lengths all within the range Lp=10-13 nm (for a fixed mass per unit length).

    ▼ Jump to Download Statistics
    Item Type: Article
    Uncontrolled Keywords: Conformation zoning Intrinsic viscosity Persistence length Sedimentation coefficient Target function Citrus
    Subjects: Q Science > QD Chemistry
    Schools: School of Applied Sciences
    Related URLs:
    References:

    Axelos, M. A. V., & Thibault, J.-F. (1991). The chemistry of low-methoxyl pectin gelation. In R. H. Walter (Ed). The Chemistry and Technology of Pectin(pp 109-118). San Diego: Academic Press.

    Bohdanecky, M. (1983). New method for estimating t
    he parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers.
    Macromolecules, 16, 1483-1492.

    Braccini, I.; Grasso, R. P., & Perez, S. (1999).
    Conformational and configurational features of acidic polysaccharides and their interactions with
    calcium ions: a molecular modeling investigation
    Carbohydrate Research, 317,199-130.

    Chapman, H. D.; Morris, V. J.; Selvendran, R. R., & O’Neill, M. A. (1987). Static and dynamic light-scattering studies of pectic polysaccharides from the middle lamellae and primary cell walls of cider apples. Carbohydrate Research,1653, 53-68.
    Corredig, M.; Kerr, W., & Wicker, L. (2000). Molecular characterisation of commercial pectins by separation with linear mix gel permeation columns in-line with multi-angle light scattering detection. Food Hydrocolloids, 14, 41-47.

    Cros, S. C.; Garnier, C.; Axelos, M. A. V.; Imbery, A., & Perez, S. (1996). Solution conformations of pectin polysaccharides: determination of chain characteristics by small angle neutron scattering,viscometry and molecular
    modeling. Biopolymers, 39, 339-352.

    Fishman, M. L.; Chau, H. K.; Kolpak, F., & Brady, J. (2001). Solvent effects on the molecular properties of pectins. Journal of Agricultural and Food Chemistry, 49, 4494-45019.

    Gralén, N. (1944). Sedimentation and diffusion measurements on cellulose and cellulose derivatives. PhD Dissertation, University of Uppsala, Sweden.

    Harding, S. E. (1997). The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Progress in Biophysics and Molecular Biology, 68, 207-262.
    Harding, S. E. (2005). Analysis of polysaccharides size, shape and interactions. In
    D. J. Scott, S. E. Harding, & A. J. Rowe (Eds.).
    Analytical Ultracentrifugation Techniques and Methods(pp. 231-252). Cambridge: Royal Society of Chemistry.

    Harding, S. E.; Berth, G.; Ball, A.; Mitchell, J. R., & Garcìa de la Torre, J. (1991). The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydrate Polymers, 168, 1-15.

    Harding, S. E., Vårum, K. M., Stokke, B. T., & Smidsrød, O. (1991). Molecular weight determination of polysaccharides. In C. A. White (Ed.) Advances in Carbohydrate Analysis (pp. 63-144). Greenwich: JAI Press Ltd.

    Hearst, J. E. (1963). Rotatory diffusion constants
    of stiff-chain macromolecules. Journal of Chemical Physics, 38, 1062-1065.

    Hearst, J. E., & Stockmayer, W. H. (1962). Sedimentation constants of broken chains and wormlike coils. Journal of Chemical Physics, 37, 1425-14335.

    Huggins, M. L. (1942). The Viscosity of Dilute Solutions of Long-chain Molecules. IV. Dependence on Concentration. Journal of the American Chemical
    Society, 64, 2716-2718.

    Kraemer, E. O. (1938). Molecualr weights of cellul
    ose and cellulose derviatives. Industrial and Engineering Chemistry, 30, 1200-1203.

    Kratky, O., & Porod, G. (1949). Röntgenungtersuchu
    ng gelöster fadenmoleküle. Recueil Des Travaux Chimiques Des Pays-Bas, 68, 1106-1109.

    Lapasin, R., & Pricl, S. (1995). Rheology of Industrial Polysaccharides: Theory and Applications(pp 134-160). London: Blackie.

    Morris, G. A.; Foster, T. J., & Harding, S. E. (1999). Elevated-temperature analytical ultracentrifugation on a low-methoxy polyuronide.
    Progress in Colloid and Polymer Science, 113, 205-208.

    Morris, G. A.; Foster, T. J., & Harding, S. E. (2000). The effect of degree of esterification on the hydrodynamic properties of citrus pectin.
    Food Hydrocolloids, 14, 227-235.

    Morris, G. A.; Foster, T. J., & Harding, S. E. (2002). A hydrodynamic study of the depolymerisation of a high methoxy pectin at el
    evated temperatures. Carbohydrate Polymers, 48, 361-367.

    Norziah, M. H.; Fang, E. O., & Abd Karim, A. (2000). Extraction and characterisation of pectin from pomelo peels. In P.A. Williams, & G. O. Philips(Eds.). Gums and Stabilisers for the Food Industry 10 pp 27-36). Cambridge: Royal Society of Chemistry.

    Noto, R.; Martorana, V.; Bulone, D., & San Biagio,
    B. L. (2005). Role of charges and solvent on the conformational properties of poly(galacturonic acid) chains: a molecular dynamics study.
    Biomacromolecules, 6, 2555-2562.

    Ortega, A., & García de la Torre, J. (in preparation). See also Ortega, A. (2005).
    Metodologías computacionales para propiedades en disolución de macromoléculas rígidas y flexibles. PhD Dissertation, Universidad de Murcia.

    Pavlov, G. M.; Rowe, A. J., & Harding, S. E. (1997). Conformation zoning of large molecules using the analytical ultracentrifuge. Trends in Analytical Chemistry, 16, 401-405.

    Pavlov, G. M.; Harding, S. E., & Rowe, A. J. (1999). Normalized scaling relations as a natural classification of linear macromolecules according to size. Progress in Colloid and Polymer Science, 113, 76-80.

    Perez, S.; Rodríguez-Carvajal, M. A., & Doco, T. (2003). A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie, 85, 109-121.

    Picout, D. R.; Ross-Murphy, S. B.; Errington, N., & Harding, S. E. (2001). Pressure cell assisted solution characterization of polysaccharides. 1. Guar gum Biomacromolecules, 2, 1301-1309.

    Pilgrim, G. W.; Walter, R. H., & Oakenfull, D. G. (1991). The chemistry of high-methoxyl pectins. In R. H. Walter (Ed). The Chemistry and Technology of Pectin(pp 24-50). San Diego: Academic Press.

    Ralet, M.-C.; Bonnin, E., & Thibault, J.-F. (2001). Chromatographic study of highly methoxylated lime pectins de-esterified by different pectin methyl-esterases. Journal of Chromatography B, 753, 157-166.

    Ralston, G. (1993). Introduction to Analytical Ultracentrifugation(pp 27-28). Palo Alto: Beckman Instruments Inc.

    Ridley, B. L.; O’Neil, M. A., & Mohnen, D. (2001).
    Pectins: structure, biosynthesis and oligogalacturonide-related signalling. Phytochemistry, 57, 929-967.

    Rowe, A. J. (1977). The concentration dependence of transport processes: a general description applicable to the sedimentation, translational diffusion and viscosity coefficients of macromolecular solutes. Biopolymers, 16, 2595-2611.

    Schuck, P. (1998). Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophysical Journal, 75, 1503-1512.

    Schuck, P. Diffusion-deconvoluted sedimentation co
    efficient distributions for the analysis of interacting and non-interacting protein
    mixtures. In D. J. Scott, S. E. Harding, & A. J. Rowe (Eds.). Analytical Ultracentrifugation Techniques and Methods(pp. 26-50). Cambridge: Royal Society of Chemistry.

    Stockmayer, W. H., & Fixman, M. J. (1963). On the
    estimation of unperturbed dimensions from intrinsic viscositiesxcin. Journal of Polymer Science C, 1, 137-141.

    Tanford, C. (1961). Physical Chemistry of Macromolecules. New York: John Wiley and Sons.
    Tombs M. P., & Harding, S. E. (1998). An Introduction to Polysaccharide Biotechnology(pp. 14-20). London: Taylor and Francis.

    Van Buren, J. P. (1991). Function of pectin in plant tissue structure and firmness.
    In R. H. Walter (Ed). The Chemistry and Technology of Pectin(pp 1-22). San Diego: Academic Press.

    Wales, M., & van Holde, K. E. (1954). The concentration dependence of the sedimentation constants of flexible macromolecules. Journal of Polymer Science, 14, 81-86.

    Willats, W. G. T.; McCartney, L.; Mackie, W., & Knox J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47, 9-27.

    Wyatt, P. J. (1992). Combined differential light
    scattering with various liquid chromatography separation techniques. In S. E. Harding, D. B. Sattelle, & V. A. Bloomfield (Eds.). Laser Light Scattering in Biochemistry(pp 35-58). Cambridge: Royal Society of Chemistry.

    Yamakawa, H., & Fujii, M. (1973). Translational friction coefficient of wormlike chains. Macromolecules, 6, 407-405.

    Yoo, S.-H.; Fishman, M. L.; Hotchkiss, A. T., & Lee, H. G. (2006). Viscometric behavior of high-methoxy and low-methoxy pectin solutions.
    Food Hydrocolloids, 20, 62-67.

    Depositing User: Gordon Morris
    Date Deposited: 19 May 2011 12:47
    Last Modified: 01 Jul 2014 08:50
    URI: http://eprints.hud.ac.uk/id/eprint/10448

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©